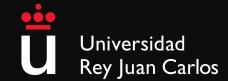
Análisis de variable compleja

Tema 1: El cuerpo de los números complejos

Grado en Ingeniería Aeroespacial

Dr. Eduardo del Arco Fernández



Bibliografía

Variable Compleja y Aplicaciones. Ruel V. Churchill y James Word Brown. 4ª Edición. Libros McGraw-Hill de México

Complex Analysis. An introduction to the Theory of Analytic Funciones of One Complex Variable. Lars V. Ahlfors. Third Edition. McGraw-Hill, Inc.

Donde estamos

Tema 0: Presentación

Tema I: El Cuerpo de los Números Complejos

- Definiciones básicas
- Propiedades algebraicas
- Interpretación geométrica
- · Propiedades del módulo y el conjugado
- Forma polar
- Forma exponencial
- Potencias y raíces
- Regiones del plano de Argand
- Tema 2: Funciones complejas de variable compleja
- Tema 3: Integración de funciones complejas

I. Definiciones básicas

DEF: Los números complejos z se definen como pares ordenados z=(x,y) de números reales x e y con operación de suma y producto.

$$(0,y) \rightarrow \text{Imaginarios puros} \quad \mathbf{Im}(z) = y$$

 $(x,0) \rightarrow \text{Reales puros} \quad \mathbf{Re}(z) = x$

DEF: Sean dos números complejos z_1, z_2 , entonces $z_1 = z_2$ si y solo si

$$(x_1, y_1) = (x_2, y_2)$$

DEF: Suma de dos números complejos z_1, z_2

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

e.g.:
$$(x,0) + (0,y) = (x,y)$$

DEF: Producto dos números complejos z_1, z_2

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2, y_1 x_2 + x_1 y_2)$$

e.g.: $(0,1) + (y,0) = (0,y)$

Se lee: La parte real de z_1 es igual a la parte real de z_2 ... lo mismo para la parte imaginaria

En la práctica, esta notación es confusa y por eso no se utiliza

I. Definiciones básicas

OBS: Suma y producto solamente con la parte real

$$(x_1,0) + (x_2,0) = (x_1 + x_2,0)$$

$$(x_1,0) \cdot (x_2,0) = (x_1x_2,0)$$

COR: El sistema de los números complejos es una extensión de los números reales

DEF: Forma rectangular o binomial

$$z = (x, y) = x + iy$$

Utilizando la operación del producto:

$$i^2 = (0,1)(0,1) = (-1,0)$$

Posiblemente este sea una de las relaciones más importantes de la historia de las matemáticas:

$$\left(i^2 = -1 \Rightarrow i = \sqrt{-1}\right)$$

Esta es la notación que se utiliza habitualmente, junto a la notación polar (o exponencial)

En ingeniería eléctrica y electromagnetismo en general, se utiliza la letra j, para distinguir a la corriente eléctrica i(t)

2. Propiedades algebraicas

PROP: Propiedad conmutativa

$$z_1 + z_2 = z_2 + z_1$$

$$z_1 \cdot z_2 = z_2 \cdot z_1$$

PROP: Propiedad asociativa

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$

$$(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$$

PROP: Propiedad distributiva

$$z_1 \cdot (z_2 + z_3) = z_1 z_2 + z_1 z_3$$

PROP: Elementos neutros suma y producto

- Elemento neutro de la suma: 0 = (0,0), de modo que z + 0 = z
- Elemento neutro del producto: 1 = (1,0), de modo que $z \cdot 1 = z$

e.g.:
$$(x + iy) + (u + iv) = x + y \Rightarrow u = 0 \& v = 0$$

¿Qué suma "de cabeza" es más sencilla, 27+7 o 20+14?

Esto parece obvio, que luego no se os olvide

2. Propiedades algebraicas

DEF: Inverso de la suma. Cada número complejo z = (x, y)

le corresponde un -z = (-x, -y), tal que:

$$z_1 - z_2 = z_1 + (-z_2)$$

DEF: Inverso del producto, $z \cdot z^{-1} = 1$

$$(x, y) \cdot (u, v) = 1$$

Obtención de $z^{-1} = (u, v) = u + iv$

Lo escribimos en forma rectangular y, utilizando las propiedades...

$$(x + iy)(u + iv) = xu + ixv + iyu - yv = xu - yv + i(xv + yu) = 1 + i0$$

$$xu - yv = 1$$

$$yu + xv = 0$$

$$\Rightarrow u = \frac{x}{x^2 + y^2} & v = \frac{-y}{x^2 + y^2}$$

Veremos que existen un par de maneras más prácticas de dividir números complejos

COR: Si $z_1 z_2 = 0$, entonces algún $z_i = 0$

2. Propiedades algebraicas

DEF: División de números complejos

$$\frac{z_1}{z_2} = z_1 \cdot z_2^{-1} (\text{,con: } z_2 \neq 0)$$

$$\frac{z_1}{z_2} = \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}, \frac{y_1 x_2 - x_1 y_2}{x_2^2 + y_2^2}\right)$$

PROPs:

$$1. \quad \frac{z_1}{z_2} = z_1 \cdot \left(\frac{1}{z_2}\right)$$

2.
$$(z_1 z_2)(z_1^{-1} z_2^{-1}) = (z_1 z_1^{-1})(z_2 z_2^{-1}) = 1$$

3.
$$(z_1 z_2)^{-1} = z_1^{-1} z_2^{-1}$$

4.
$$\frac{z_2 + z_2}{z_3} = \frac{z_1}{z_3} + \frac{z_2}{z_3}$$

$$5. \ \frac{z_1 z_2}{z_3 z_4} = \frac{z_1}{z_3} \cdot \frac{z_2}{z_4}$$

¿Me aprendo esto de memoria? No. Hay dos formas mucho más sencillas, las veremos más adelante

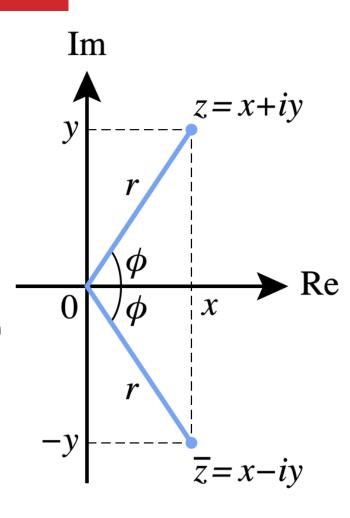
3. Interpretación geométrica

DEF: Plano de Argand,

también llamado plano complejo o plano z. Es la representación geométrica de los números complejos, estableciendo la parte real y la parte imaginaria como dos ejes perpendiculares.

OBS: El concepto de plano de Argand permite la interpretación geométrica de los números complejos.

OBS: Una imagen vale más que mil palabras.



¿Quién fue Jean Robert Argand? Se trata de una historia muy interesante. https://mathshistory.standrews.ac.uk/Biographies/ Argand/

3. Interpretación geométrica

OBS: Cada par parte real, parte imaginaria, se representa como un segmento orientado

$$(0,0) \rightarrow (x,y)$$

DEF: Módulo, proximidad al origen (0,0)

$$|z| = r = \sqrt{x^2 + y^2}$$

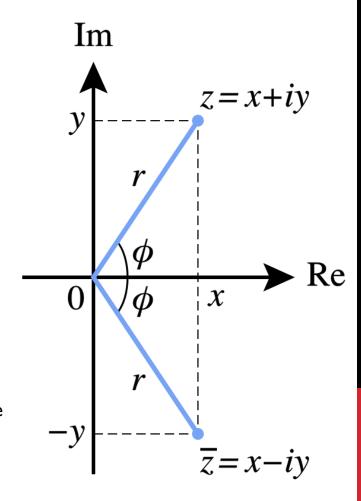
e.g.:

•
$$|-3+2i| = \sqrt{9+2} = \sqrt{10}$$

•
$$|1 + 4i| = \sqrt{1 + 16} = \sqrt{17}$$

Cuestión I:

- |z-1+3i|=2, donde z son los números complejos que cumplan esa igualdad. ¿Qué lugar geométrico forman dichos z? Se trata de la circunferencia de centro $z_0=(1,-3)$ y radio R=2.
- ¿Y qué sucede si planteamos |z 1 + 3i| < 2?



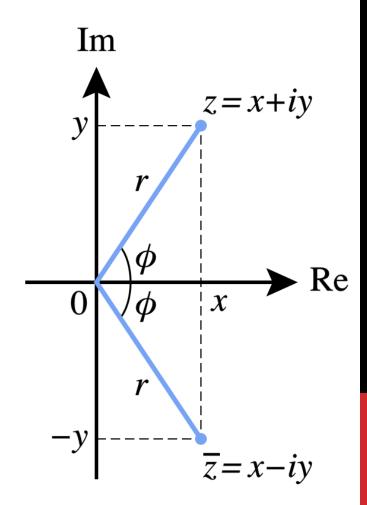
3. Interpretación geométrica

DEF: Conjugado. Sea un número complejo z=x+iy, el conjugado de z es $\bar{z}=x-iy$

OBS: Véase el dibujo

OBS: En este curso preferimos utilizar otra notación para evitar la confusión con la notación de vector y, sobre todo, la de fasor. Así:

$$\bar{z} = z^*$$



PROPs:

•
$$(z_1 + z_2)^* = z_1^* + z_2^*$$

•
$$(z_1 - z_2)^* = z_1^* - z_2^*$$

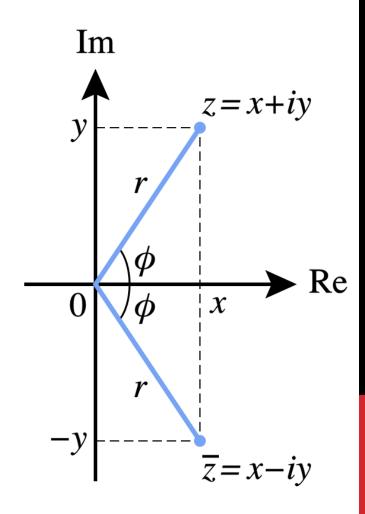
COR:

$$\mathbf{Re}(z) = \frac{z + z^*}{2}$$

$$\mathbf{Im}(z) = \frac{z - z^*}{2i}$$

$$z \cdot z^* = |z|^2$$

e.g.: pizarra



PROPs: (del módulo)

1.
$$|z_1 + z_2| = |z_1||z_2|$$

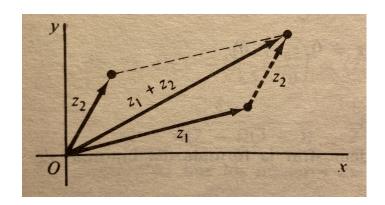
2.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \cos z_2 \neq 0$$

3. Desigualdad triangular:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

DEM: (de l)

$$|z_1 z_2|^2 = (z_1 z_2)(z_1 z_2)^* = (z_1 z_2^*)(z_1 z_2^*) = |z_1|^2 |z_2|^2 = (|z_1| |z_2|^2)$$



Desigualdad triangular. Fuente: Variable Compleja y Aplicaciones. V. Churchill y Ward Brown. 4ª edición.

DEM: Designaldad triangular, $|z_1 + z_2| \le |z_1| + |z_2|$

$$|z_1 + z_2|^2 = (z_1 + z_2)(z_1 + z_2)^* = (z_1 + z_2)(z_1^* + z_2^*)$$

Efectuando la multiplicación por el miembro de la derecha:

$$|z_1 + z_2|^2 = z_1 z_1^* + z_1 z_2^* + (z_1 z_2^*)^* + z_2 z_2^*$$

No obstante:

$$z_1 z_2^* + (z_1 z_2^*)^* = 2 \operatorname{Re}(z_1 z_2^*) \le 2 |z_1 z_2^*| = 2 |z_1| |z_2|$$

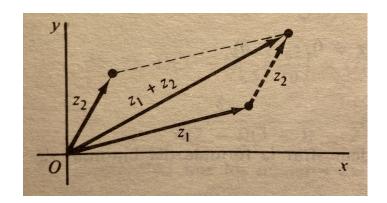
lo introducimos y aplicamos corolario:

$$|z_1 + z_2|^2 \le |z_1|^2 + 2|z_1||z_2| + |z_2|^2$$

que también puede escribirse como:

$$|z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$$

Los módulos nunca son negativos (recuerde la definición), así que tomando raíces cuadradas se verifica la desigualdad triangular.



Desigualdad triangular. Fuente: Variable Compleja y Aplicaciones. V. Churchill y Ward Brown. 4^a edición.

DEF: Sean dos números complejos z_1 y z_2 :

$$z_1 = x_1 + iy_1$$

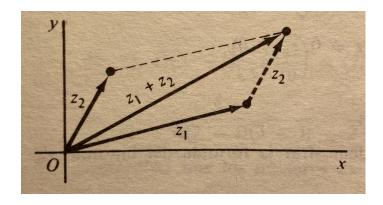
$$z_2 = x_2 + iy_2$$

Se define la distancia entre z_1 y z_2 como $|z_1 - z_2|$

$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

OBS: Repase los conceptos de:

- Distancia Euclidea.
- Forma cuadrática sobre un espacio vectorial
- Norma de un espacio vectorial



Desigualdad triangular. Fuente: Variable Compleja y Aplicaciones. V. Churchill y Ward Brown. 4ª edición.

Cuestión 2: ¿Qué forma geométrica tienen los módulos "por sí solos" en el Plano de Argand? Dibuje los siguientes números complejos:

- |z| = C
- $|z| \ge C$
- $|z| \leq 1$
- |*z*| < 1

5. Forma polar

DEF: Sean θ y r coordenadas polares del punto (x, y), z = x + iy, tal que:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Entonces $z = r(\cos\theta + i\sin\theta)$

e.g.:

$$1 - i \rightarrow \sqrt{2} \left[\cos(-\pi/4) + \sin(-\pi/4) \right]$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = -\frac{\pi}{4} + 2k\pi, k = 0, \pm 1, \pm 2,...$$

$$\tan \theta = \frac{y}{x} \to \theta = \arctan \frac{y}{x}$$

DEF: Valor principal $\theta = \arg z$ es el único valor entre $-\pi < \theta \le \pi$

Con esto vamos a dividir dos números complejos, y también vamos a hacer muchas más cosas muy interesantes

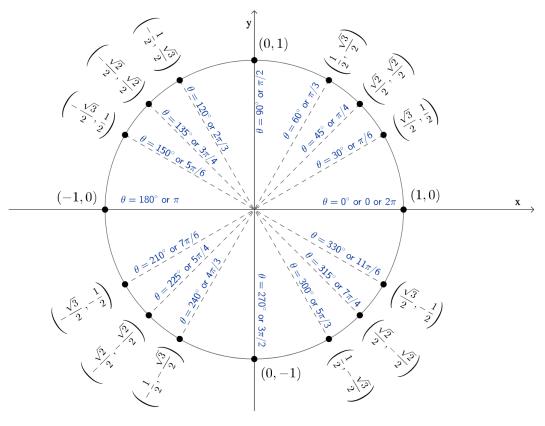
Mucho cuidado con la calculadora y la arco tangente, hay que usarla "con cabeza": La calculadora siempre da el ángulo más próximo a 0 o al primer cuadrante.

¿Qué sucede si x e y son ambos negativos? que nos dará un ángulo del primer cuadrante y no del tercero. ¡Hay que sumarle π !

¿Y si y es negativo? La calculadora nos proporciona en el segundo cuadrante, no en el cuarto...

La calculadora, mejor en radianes... Lo ideal (para toda la vida):

- Aprendan a trabajar en radianes y en grados indistintamente
- Para hacer cálculos, mejor en radiantes
- Para hablar en lenguaje natural, mejor en grados (no le dices a nadie por la calle que haga un giro en $-\pi/2$ o que corte el pan a $\pi/6$).
- Apréndase las razones trigonométricas más comunes para ir más rápido...



5. Forma polar

PROPs:

1.
$$z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$$

2.
$$arg(z_1z_2) = arg z_1 + arg z_2$$

3.
$$z^{-1} = \frac{1}{r} \left[\cos(-\theta) + i \sin(-\theta) \right], r > 0$$

4.
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right], r_2 > 0$$

5.
$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2, r_2 > 0$$

Cuestión 3: Demuestre la propiedad 1.

Cuestión 4: Demuestre la propiedad 4.

Cuestión 5: Encuentre la relación entre la propiedad 4 y la anterior definición de división.

¡Aquí está la división de números complejos!

6. Forma exponencial

DEF: Fórmula de Euler

Para cualquier valor real de θ , se cumple:

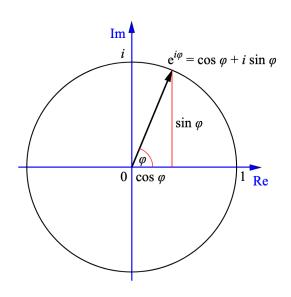
$$e^{i\theta} = \cos\theta + i\sin\theta$$

Donde *e* es el número de Euler.

¿Cuál es el número de Euler cómo se obtiene? Repase las series aritméticas y las series geométricas para entender esta definición:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

El propio Leonhard Euler (siglo XVIII) definió el número e como: "aquel número real tal que el valor de la derivada (la pendiente de la línea tangente) de la función $f(x) = e^x$ en el punto x = 0 es exactamente 1".



6. Forma exponencial

OBS: Breve explicación histórica

Leonhard Euler fue alumno de Jakob Bernoulli, miembro de la conocida familia de científicos y matemáticos. Benoulli estaba estudiando el problema del interés compuesto, de vital importancia en el cálculo de las liquidaciones de los préstamos y las inversiones...

Enfoquemos brevemente este problema con un ejemplo en números *redondos*: Se invierte I € en un fondo con un interés anual del 100%. Si este fondo paga los intereses una vez al año, se obtendrán 2 €. Si se pagan los intereses 2 veces al año, dividiendo el interés entre 2, la cantidad obtenida es I € multiplicado por I,5 dos veces, es decir $1 \in x$ $1,5^2 = 2,25 \in$. Si dividimos el año en 4 periodos, al igual que la tasa de interés, se obtienen $1 \in x$ $1,25^2 = 2,4414... \in$. En pagos mensuales:

$$\left(1 + \frac{1}{12}\right)^{12} = 2,61303... \in$$

En resumen, cada vez que se aumenta el número de liquidaciones, se reduce la tasa de interés del periodo de liquidación. Llevando el número de liquidaciones al infinito, se obtiene:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

6. Forma exponencial

OBS: La forma exponencial permite trabajar con los números complejos con las mismas reglas algebraicas usuales para los números reales y e^x .

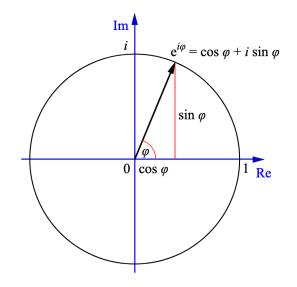
OBS: Multiplicación y división en forma exponencial

$$z = re^{i\theta}$$

$$z^{-1} = \frac{1}{r}e^{-i\theta}, r > 0$$

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}, r_2 > 0$$



OBS: Potencias y raíces

$$z^n = r^n e^{in\theta}$$

$$z^{n+1} = z \cdot z^n$$

7. Potencias y raíces

OBS: Algunas consecuencias interesantes:

- I. Identidad de Euler: $e^{i\pi} + 1 = 0$
- 2. Formula de "de Moivre": $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- 3. Las potencias z:

$$z^n = 1 \rightarrow (re^{i\theta})^n = 1 \rightarrow r^n e^{in\theta} = 1e^{i\theta}$$

entonces:

$$r = 1$$

$$n\theta = 0 + 2k\pi, k = 0, \pm 1, \pm 2,...$$

es decir:

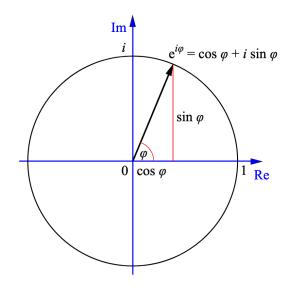
$$r = 1$$

$$\theta = \frac{2k\pi}{n}$$

de modo que:

$$z = e^{i\frac{2k\pi}{n}} = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, k = 0, \pm 1, \pm 2,...$$

son las raíces enésimas de la unidad.



para n=2, las raíces son ± 1 para $n\geq 3$, corresponden a los vértices de un polígono regular de n lados que se circunscribe en un círculo unidad centrado en el origen

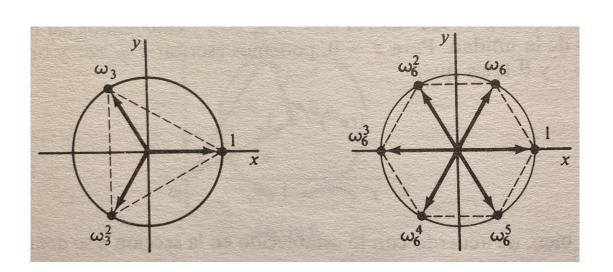
7. Potencias y raíces

OBS: A veces, para simplificar la escritura, se utiliza el símbolo ω_n o W_n , de modo que:

$$\omega_n^k = e^{i\frac{2\pi k}{n}}$$

COR:

$$\omega_n^n = 1$$



En el análisis de Fourier, concretamente uno de los algoritmos de la Fast Fourier Transform (FFT), a este símbolo se le denomina Twiddle Factor

Triángulo y hexágono. Las tres raíces cúbicas de la unidad forma un triángulo equilátero. Y las seis raíces sextas de la unidad forman un hexágono regular. Nótese que el 1 siempre es raíz.

7. Potencias y raíces

El método anterior se utiliza para hallar las raíces n-ésimas de cualquier número complejo $z_0=r_0e^{i\theta_0}$. Las raíces de la ecuación:

$$z^n = z_0$$

son los números:

$$c_k = \sqrt[n]{r_0}e^{i\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right)}, k = 0, 1, ..., n - 1$$

De forma análoga a la raíz unidad, si c es una raíz n-ésimas de z_0 , el conjunto de todas las raíces se escribe de la forma:

$$c, c\omega_n, c\omega_n^2, \ldots, c\omega_n^{n-1}$$

8. Regiones del plano complejo

Pizarra

- 1. Exprese en forma binómica los números complejos
 - (a) $\frac{3+5i}{2-i}$
 - (b) $\frac{1+i^3}{(1+i)^3}$
- 2. Exprese en forma binómica la raíz

$$\sqrt{3-4i}$$

- 3. Halle todos los pares de números complejos que tengan igual parte imaginaria, y cuya suma y cuyo ciente sean imaginarios puros.
- 4. Halle todos los números complejos z tales que:

$$z^3z^* = -1$$

- 5. Encuentre los pares de números complejos cuya suma es -6i y su productor es 6-8i.
- 6. Encuentre los pares de números complejos tales que su cociente es imaginario puro, su suma es 5 y el módulo de uno es el doble que el del otro.
- 7. Sabiendo que -i es una raíz del polinomio $z^3-(3-i)z^2+(2-3i)z+2i=0$, halle las raíces de $z^3-(3+i)z^2+(2+3i)z+2i=0$.
- 8. Pruebe la siguiente propiedad del argumento del producto de dos números complejos:

$$\arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2$$

- 9. Represente en forma exponencial los números 1+i, 1-i, -1+i, -1-i.
- 10. Exprese $\cos 3\theta$ y $\sin 3\theta$ en potencias de $\cos \theta$ y $\sin \theta$.
- 11. Compruebe la siguiente propiedad: Dados dos números enteros m y n primos entre sí y un número complejo cualquiera, se cumple la siguiente relación:

$$z^{m/n} = (z^m)^{1/n} = (z^{1/n})^m$$

- 12. Obtenga las raíces: $(1-i)^{3/2}$
- 13. Demuestre que cualquier raíz n-sima de la unidad distinta de $w_0 = 1$ cumple la relación:

$$1 + w_k + w_k^2 + \dots + w_k^{n-1} = 0$$
 $k = 1, 2, \dots, n-1$

- 14. Calcule todos los números $z \in \mathbb{C}$ tales que:
 - (a) |z-1| = |z-3|
 - (b) |z-1| = Re(z) + 1

Números complejos Tema 1

- 15. Para los siguientes conjuntos definidos en el plano complejo:
 - (a) $|\arg z| \leq \frac{\pi}{4}$
 - (b) $Re^2(z) > 1$

Se pide:

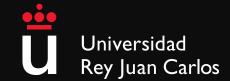
- (a) Dibujar el conjunto en el plano complejo
- (b) Especificar si es abierto
- (c) Especificar si es dominio
- (d) Especificar si está acotado
- (e) Describir la frontera del conjunto
- 16. A partir de la definición de e^z , demostrar que:
 - (a) $e^{z+2\pi i} = e^z$
 - (b) $(e^z)^n = e^{nz}$ para todo $n \in \mathbb{N}$
 - (c) $(e^{z+w}) = e^z$ para todo $z \in \mathbb{C} \Rightarrow w = 2k\pi i$ con $k = 0, \pm 1, \pm 2...$
- 17. Compruebe que la función $f(z) = e^z$ transforma la franja $\{z = x + iy/x \ge 0, 0 \le y \le \pi\}$ en la zona del semiplano superior exterior a la circunferencia |w| = 1.
- 18. Partiendo de las definiciones de las funciones correspondientes, demostrar las siguientes identidades:
 - (a) $\sin^2(z) + \cos^2(z) = 1$
 - (b) $\cos\left(\frac{\pi}{2} z\right) = \sin(z)$
 - (c) $\sin(iz) = i \sinh(z)$ $\cos(iz) = \cosh(z)$
- 19. Calcule:
 - (a) $\log(4-3i)$
 - (b) $\log(-4+3i)$
- 20. Calcule:
 - (a) $(-1)^i$

Análisis de variable compleja

Tema 2: Funciones, continuidad y derivación

Grado en Ingeniería Aeroespacial

Dr. Eduardo del Arco Fernández



Bibliografía

Variable Compleja y Aplicaciones. Ruel V. Churchill y James Word Brown. 4ª Edición. Libros McGraw-Hill de México

Complex Analysis. An introduction to the Theory of Analytic Funciones of One Complex Variable. Lars V. Ahlfors. Third Edition. McGraw-Hill, Inc.

Donde estamos

Tema 0: Presentación

Tema I: El Cuerpo de los Números Complejos

Tema 2: Funciones, continuidad y derivación

- Un poco más de topología
- Funciones complejas de variable compleja
- Aplicaciones
- Límites y continuidad
- Derivación
- Ecuaciones de Cauchy-Riemann
- Funciones analíticas
- Funciones armónicas
- Transformación conforme

Tema 3: Integración de funciones complejas

I. Un poco más de topología

DEF: Cierre de *S*. Es el conjunto cerrado que consiste de la unión de *S* y su frontera.

OBS: Hay conjuntos que no son ni abiertos ni cerrados:

- Para que un conjunto no sea abierto, debe existir un punto frontera contenido en el conjunto.
- Para que un conjunto no sea cerrado, debe existir un punto frontera no contenido en el conjunto.

e.g.:
$$0 < |z| \le 1$$

COR: El conjunto de todos los números complejos es abierto y cerrado simultáneamente ya que no tiene puntos frontera.

DEF: Conexo. El conjunto S es abierto si cada par de puntos z_1 y z_2 pueden ser unidos en él mediante un camino poligonal consistente en un número finito de intervalos unidos en cadena, con todos sus puntos en S.

DEF: Dominio. S es dominio si es un conjunto abierto y conexo.

I. Funciones complejas de variable compleja

w es el valor de f en z S s un dominio de definición

DEF: Sea S un conjunto de números complejos. Una función f definida en S es una regla que asigna a cada $z \in S$ un número complejo en w, de modo que:

$$w = f(z)$$

DEF: Función multievaluada. Regla que asigna más de un valor al punto z en el dominio de definición.

e.g.:
$$w = \sqrt{z}$$

I. Funciones complejas de variable compleja

OBS: ¿Podemos expresar una función f(z) como un par de funciones reales? veamos algunos ejemplos, a la pitagórica:

- 1. $f(z) = z^2 \rightarrow f(z) = (x + iy)^2 = x^2 y^2 + i2xy$ de esta forma, f(z) se escribe como f(z) = u(x, y) + iv(x, y), donde uy v son dos funciones reales, tal que: $u = x^2 - y^2$ v = 2xy
- $2. \ u(x,y) = y \int_0^\infty e^{-xt} dt$

$$v(x,y) = \sum_{n=0}^{\infty} y^n$$

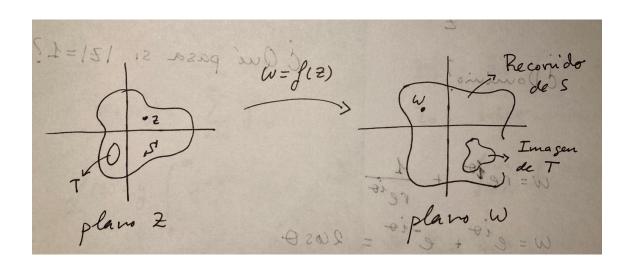
$$f(z) = y \int_0^\infty e^{-xt} dt + i \sum_{n=0}^\infty y^n$$

COR: Si en u(x, y) + iv(x, y), v(x, y) = 0, f(z) es una función real

3.
$$f(z) = |z|^2$$

¿Cuál será el dominio en el ejemplo 2?

2. Aplicaciones o Mappings



Ejemplos: Traslaciones, rotaciones y reflexiones

I.
$$w = z + 1$$

$$2. \quad w = iz$$

3.
$$w = z^*$$

4.
$$w = z + \frac{1}{z}$$

En estos casos, conviene considerar el plano z y el plano w como el mismo plano

Este es un poco más complicado. Este mapping está pidiendo que lo expresen en polares...

3. Límites y continuidad

DEF: Sea f una función compleja de variable compleja definida en un entorno de z_0 , salvo posiblemente el propio z_0

$$\lim_{z \to z_0} f(z) = w_0$$

Para cada número positivo ε existe un número δ tal que

$$|f(z) - w_0| < \varepsilon \Leftrightarrow 0 < |z - z_0| < \delta$$

e.g.:

$$f(z) = i\frac{z}{2}$$
 en el disco abierto $|z| < 1$

$$\lim_{z \to 1} f(z) = \frac{i}{2}$$

Vamos a ver que relación existe entre ε y δ , por un lado:

$$\left| f(z) - \frac{i}{2} \right| = \left| \frac{iz}{2} - \frac{i}{2} \right| = \frac{|z-1|}{2}$$

de modo que:

$$\frac{|z-1|}{2} < \varepsilon \text{ para } 0 < |z-1| < \delta \Leftrightarrow \delta = 2\varepsilon$$

Hay que repasar las propiedades del módulo

Cuestión I: Obtenga la relación entre ε y δ

$$\lim_{z \to 2i} (2x + iy^2) = 4i$$

$$\lim_{z \to \infty} \frac{1}{z^2} = 0$$

$$\lim_{z\to 0} = \infty$$

Teoremas del límite

Th I: Suponga que f(z) = u(x, y) + iv(x, y), con $z_0 = x_0 + iy_0$ y $w_0 = u_0 + iv_0$, entonces:

$$\lim_{z \to z_0} f(z) = w_0 \text{ sí y solo sí } \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ y } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$$

Th 2: Suponga que $\lim_{z\to z_0} f(z) = w_0$ y $\lim_{z\to z_0} F(z) = W_0$, entonces:

$$\lim_{z \to z_0} \left[f(z) + F(z) \right] = w_0 + W_0$$

$$\lim_{z \to z_0} \left[f(z) \cdot F(z) \right] = w_0 \cdot W_0$$

$$\lim_{z \to z_0} \frac{f(z)}{F(z)} = \frac{w_0}{W_0}, \text{ si } W_0 \neq 0$$

Consulten la demostración en los libros que hemos propuesto

Estas propiedades son muy útiles

Props: Propiedades derivadas del teorema 2

$$\lim_{z \to z_0} z = z_0 \Rightarrow \lim_{z \to z_0} z^n = z_0^n$$

- $\lim_{z \to z_0} c = c$
- . Si $P(z)=a_0+a_1z+\ldots+a_nz^n$, entonces $\lim_{z\to z_0}P(z)=P(z_0)$
- . Si $\lim_{z \to z_0} f(z) = w_0 \Rightarrow \lim_{z \to z_0} \left| f(z) \right| = |w_0|$

Se deduce de la propiedad del producto de límites

Todo lo anterior, más la propiedad de la suma de límites

Esta propiedad es interesante y tiene que ver con la composición de funciones

DEF: Una función f es continua en un punto z_0 si se cumplen las tres condiciones:

i.
$$\exists \lim_{z \to z_0} f(z)$$

ii.
$$\exists f(z_0)$$

iii.
$$\lim_{z \to z_0} f(z) = f(z_0)$$

El punto iii es equivalente a:

$$\left| f(z) - f(z_0) \right| < \varepsilon \Leftrightarrow \left| z - z_0 \right| < \delta$$

OBS: Extensiones de esta definición y consecuencias del teorema 2:

- Una función es continua en una región R si es continua en cada punto de R.
- Si dos funciones son continuas, la suma y el producto de esas funciones también es continua.
- · La composición de funciones continuas es continua.

La condición iii da por hecho que la i y la ii son ciertas...

Ejemplos:

1.
$$f(z) = xy^2 + i(2x - y)$$
 es continua en todo \mathbb{C}

2.
$$f(z) = e^{xy} + i\sin(x^2 - 2xy^3)$$
 es continua \mathbb{C}

3. Si
$$f(z) = u(x, y) + iv(x, y)$$
 es continua, entonces $\sqrt{\left[u(x, y)\right]^2 + \left[v(x, y)\right]^2}$ es continua también

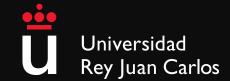
Los resolvemos en la pizarra

Análisis de variable compleja

Tema 2: Funciones, continuidad y derivación

Grado en Ingeniería Aeroespacial

Dr. Eduardo del Arco Fernández



Bibliografía

Variable Compleja y Aplicaciones. Ruel V. Churchill y James Word Brown. 4ª Edición. Libros McGraw-Hill de México

Complex Analysis. An introduction to the Theory of Analytic Funciones of One Complex Variable. Lars V. Ahlfors. Third Edition. McGraw-Hill, Inc.

Donde estamos

Tema 0: Presentación

Tema I: El Cuerpo de los Números Complejos

Tema 2: Funciones, continuidad y derivación

- Un poco más de topología
- Funciones complejas de variable compleja
- Aplicaciones
- Límites y continuidad
- Derivación
- Ecuaciones de Cauchy-Riemann
- Funciones analíticas
- Funciones armónicas
- Transformación conforme

Tema 3: Integración de funciones complejas

DEF: Sea f una función cuyo dominio de definición contenga un entorno de un punto z_0 . La derivada de f en z_0 , escrita $f'(z_0)$, se define por la ecuación:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

La función f se dice que es derivable en z_0 cuando existe su derivada en z_0 . Otra forma de expresar la derivada, muy habitual y útil, haciendo $\Delta z = z - z_0$: Suponiendo que el límite exista...

$$f'(z_0) = \lim_{\Delta z \to z_0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

Al considerar esta forma, sustituimos frecuentemente z_0 por z, y hacemos

$$\Delta w = f(z + \Delta z) - f(z)$$
, de modo que:

$$f'(z) = \frac{dw}{dz} = \lim_{z \to 0} \frac{\Delta w}{\Delta z}$$

Para referirnos a cualquier z_0

El cálculo de derivadas es idéntico al habitual en \mathbb{R} .

Reglas básicas:

$$\frac{d}{dz}c = 0$$

$$\frac{d}{dz}z = 1$$

$$\frac{d}{dz}z^n = nz^{n-1}$$

El cálculo de derivadas es idéntico al habitual en \mathbb{R} . Reglas básicas:

$$\frac{d}{dz}\left[f(z) + F(z)\right] = f'(z) + F'(z)$$

$$\frac{d}{dz}\left[f(z)F(z)\right] = f(z)F'(z) + f(z)'F(z)$$

$$\frac{d}{dz}\left[\frac{f(z)}{F(z)}\right] = \frac{f'(z)F(z) - f(z)F'(z)}{F(z)^2}, F(z) \neq 0$$

•
$$F(z) = g[f(z)], F'(z_0) = g'[f(z_0)]f'(z_0)$$

El cálculo de derivadas es idéntico al habitual en \mathbb{R} . Composición:

• si
$$F(z) = g\left[f(z)\right]$$
, entonces: $F'(z_0) = g'\left[f(z_0)\right]f'(z_0)$

. si
$$w = f(z)$$
 y $W = g(w)$, entonces: $\frac{dW}{dz} = \frac{dW}{dw} \frac{dw}{dz}$

e.g.:

$$\frac{d}{dz}(2z^2 + i)^5$$

$$w = 2z^2 + i \text{ y } W = w^5, \text{ entonces:}$$

$$\frac{d}{dz}(2z^2 + i)^5 = 5w^4 4z = 20z(2z^2 + i)^4$$

Estas reglas serán de vital importancia cuando z_0 sea un conjunto de puntos: una curva, trayectoria...

Esta es la Regla de la Cadena de toda la vida...

Proposición:

En momentos anteriores, hemos escrito la función como:

$$f(z) = u(x, y) + iv(x, y)$$

La derivada de f en z_0 :

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

Sabemos que:

$$z_0 = x_0 + iy_0$$

$$\Delta z = \Delta x + i \Delta y$$

Reescribimos la derivada:

$$Re\left[f'(z_0)\right] = \lim_{(\Delta x, \Delta y) \to (0,0)} \left[\frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)}{\Delta x + i\Delta y} \right]$$

$$Im\left[f'(z_0)\right] = \lim_{(\Delta x, \Delta y) \to (0,0)} \left[\frac{v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)}{\Delta x + i\Delta y} \right]$$

Ya podéis intuir por donde va la cosa...

Proposición:

Hacemos los límites en horizontal, haciendo $\Delta y = 0$:

En \mathbb{R}^2 no es tan sencillo...

$$Re\left[f'(z_0)\right]_{\Delta y=0} = \lim_{\Delta x \to 0} \left[\frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} \right]$$

$$Im [f'(z_0)]_{\Delta y=0} = \lim_{\Delta x \to 0} \left[\frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} \right]$$

Esto es hacer la derivada parcial:

$$f'(z_0) = \frac{d}{dx} \left[u(x, y) \right]_{(x, y) = (x_0, y_0)} + i \frac{d}{dx} \left[v(x, y) \right]_{(x, y) = (x_0, y_0)}$$

Habitualmente se utiliza una notación más compacta:

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$$

Proposición:

Hacemos los límites en vertical, haciendo $\Delta x = 0$:

$$Re\left[f'(z_0)\right]_{\Delta x=0} = \lim_{\Delta y \to 0} \left[\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y} \right]$$

$$Im [f'(z_0)]_{\Delta x=0} = \lim_{\Delta y \to 0} \left[\frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y} \right]$$

Análogamente:

$$f'(z_0) = v_{y}(x_0, y_0) - iu_{y}(x_0, y_0)$$

Que puede escribirse como:

$$f'(z_0) = -i \left[u_y(x_0, y_0) + i v_y(x_0, y_0) \right]$$

Cuidado con la i dividiendo

Proposición:

lgualando las dos formulaciones de $f'(z_0)$, obtenemos las

Ecuaciones de Cauchy-Riemann

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$

$$u_{y}(x_{0}, y_{0}) = -v_{x}(x_{0}, y_{0})$$

Unas ecuaciones fundamentales en INGENIERÍA y otras disciplinas científicas

Th: Suponga que

$$f(z) = u(x, y) + iv(x, y)$$

y que

$$\exists f'(z_0) \text{ en } z_0 = x_0 + iy_0$$

entonces \Rightarrow

Las derivadas parciales $u_x(x_0, y_0)$, $v_x(x_0, y_0)$, $u_y(x_0, y_0)$, $v_y(x_0, y_0)$ tienen que existir y tienen que satisfacer las

Ecuaciones de Cauchy-Riemann

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$

$$u_y(x_0, y_0) = -v_x(x_0, y_0)$$

El recíproco no es cierto

e.g.:
$$f(z) = z^2 = x^2 - y^2 + i2xy$$

$$u_x = 2x, v_x = 2y$$

$$u_y = -2y, v_y = 2x$$

cumple Cauchy-Riemann

e.g.:
$$f(z) = |z|^2 = x^2 + y^2$$

$$u_x = 2x, u_y = 2y$$

$$v_y = 0, v_x = 0$$

No se satisfacen las ec. de Cauchy-Riemann a menos que x=y=0

Las condiciones de Cauchy-Rieamann (C-R) en z_0 no bastan para asegurar la derivada en ese punto

Pero hay teoremas... muchos teoremas

Th: Sea
$$f(z) = u(x, y) + iv(x, y)$$
 y además

- **i.** Definida en un entorno de radio ε de un punto $z_0 = x_0 + iy_0$.
- ii. Existen u_x, u_y, v_x, v_y y son continuas en un radio ε .
- iii. Satisfacen C-R.

Entonces \Rightarrow

 $\mathsf{EXISTE}\, f'(z_0) \;\mathsf{en}\; (x_0,y_0)$

El recíproco no es cierto

e.g.:
$$f(z) = e^x (\cos y + i \sin y)$$

$$u_x = e^x \cos y, v_x = e^x \sin y$$

$$u_y = -e^x \sin y, v_y = e^x \cos y$$

Son continuas y satisfacen C-R en todo $\mathbb C$

$$f'(z) = u_x(x, y) + iv_y(x, y) = e^x \left(\cos y + i\sin y\right)$$

Y además f(z) = f'(z)

Condiciones de Cauchy-Riemann en coordenadas polares

Si $z_0 \neq 0$, a veces conviene usar coordenadas polares

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Condiciones de C-R en polares:

$$u_r = \frac{1}{r}v_\theta$$

$$\frac{1}{r}u_{\theta} = -v_r$$

Th: Sea $f(z) = u(r, \theta) + iv(r, \theta)$ y además:

- i. Definida en un entorno de radio ε de un punto $z_0 = r_0 (\cos \theta_0 + i \sin \theta_0)$, distinto de 0.
- ii. Existen $u_r, u_\theta, v_r, v_\theta$ y son continuas.
- iii. Satisfacen la forma polar de C-R.

Entonces
$$\Rightarrow$$
 EXISTE $f'(z_0)$ en (r_0, θ_0)

Atención a como está definida la función

El recíproco no es cierto

e.g.:

$$f(z) = \frac{1}{z} = \frac{1}{re^{i\theta}}$$
$$u(r,\theta) = \frac{\cos\theta}{r}, v(r,\theta) = \frac{-\sin\theta}{r}$$

Se cumple C-R (compruébelo)

$$f'(z) = e^{-i\theta} \left(-\frac{\cos \theta}{r^2} + i \frac{\sin \theta}{r^2} \right) = -\frac{1}{z^2}$$

¿y qué sucede en z=0? En el próximo episodio...

Grado en Ingeniería Aeroespacial en Vehículos Espaciales

Tema 1. Introducción

Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

Bibliografía

 D. K. Cheng. Fundamentos de electromagnetismo para ingenieros. Ed.: Pearson-Addison Wesley. Tema 2.

Índice

- Álgebra vectorial
- Sistemas de coordenadas
- Campos escalares y vectoriales
- 4 Cálculo integra
- 5 Operadores espaciales

Escalares y vectores

- Magnitudes electromagnéticas:
 - Escalares: número (+ unidades)

*
$$V_{ab} = 4 \,\mathrm{V}$$
, $q = -1.6 \cdot 10^{-19} \,\mathrm{C}$, ...

- Vectores: módulo + dirección + sentido (+ unidades)
 - * $\vec{E} = 0.4 \vec{u}_x \text{ V/m}, \ \vec{F}_e = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \vec{u}_r \text{ N, ...}$

Campo

Distribución espacial de una magnitud (escalar o vectorial), que puede ser o no función del tiempo

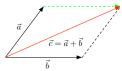
- $V_{ab}(x, y, z; t) = xy + ytz V$
- $\vec{\mathbb{E}}(r,\theta,\phi) = \frac{\sin\theta}{r} e^{-j\beta r} \vec{u}_{\phi} \, V/m$

Nociones básicas de álgebra vectorial

- Sea el vector $\vec{a} \begin{cases} {\sf M\'odulo:} & |\vec{a}| = a \\ {\sf Direcci\'on y sentido:} & \vec{u}_a = \frac{\vec{a}}{|\vec{a}|} \end{cases}$
 - de tal forma que $\vec{a} = a \vec{u}_a$
- \bullet En coordenadas cartesianas, $\vec{a}=a_x\vec{u}_x+a_y\vec{u}_y+a_z\vec{u}_z$
 - Módulo: $|\vec{a}|=\sqrt{a_x^2+a_y^2+a_z^2}$
 - \blacktriangleright Dirección y sentido: $\vec{u}_a=\frac{\vec{a}}{|\vec{a}|}=\frac{a_x\vec{u}_x+a_y\vec{u}_y+a_z\vec{u}_z}{\sqrt{a_x^2+a_y^2+a_z^2}}$

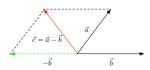
Suma y resta de vectores

- Sean los vectores $\vec{a}=a_x\vec{u}_x+a_y\vec{u}_y+a_z\vec{u}_z$ y $\vec{b}=b_x\vec{u}_x+b_y\vec{u}_y+b_z\vec{u}_z$
- Suma de vectores:



$$\vec{c} = \vec{a} + \vec{b} = (a_x + b_x)\vec{u}_x + (a_y + b_y)\vec{u}_y + (a_z + b_z)\vec{u}_z$$

• Resta de vectores:



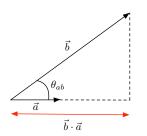
$$\vec{c} = \vec{a} - \vec{b} = (a_x - b_x)\vec{u}_x + (a_y - b_y)\vec{u}_y + (a_z - b_z)\vec{u}_z$$

Producto escalar

• Sean los vectores $\vec{a}=a_x\vec{u}_x+a_y\vec{u}_y+a_z\vec{u}_z$ y $\vec{b}=b_x\vec{u}_x+b_y\vec{u}_y+b_z\vec{u}_z$

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta_{ab} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

• El resultado es un NÚMERO!!!



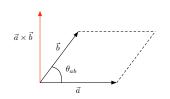
- ► Representa la proyección de un vector (\vec{b}) sobre una dirección (\vec{a}) . Ej: $\vec{b} \cdot \vec{u}_x = b_x$
- Si $\vec{a} \perp \vec{b}$, entonces $\theta_{ab} = \pi/2 \rightarrow \vec{a} \cdot \vec{b} = 0$
- Conmutativa: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- ▶ Distributiva: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

Producto vectorial

• Sean los vectores $\vec{a}=a_x\vec{u}_x+a_y\vec{u}_y+a_z\vec{u}_z$ y $\vec{b}=b_x\vec{u}_x+b_y\vec{u}_y+b_z\vec{u}_z$

$$\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta_{ab}\vec{u}_n$$

• El resultado es un VECTOR!!!



- Módulo: $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}||\sin\theta_{ab}|$
- Dirección: perpendicular al plano formado por \vec{a} y \vec{b}
 - Sentido: regla del sacacorchos

Producto vectorial

- Sean los vectores $\vec{a} = a_x \vec{u}_x + a_y \vec{u}_y + a_z \vec{u}_z$ y $\vec{b} = b_x \vec{u}_x + b_y \vec{u}_y + b_z \vec{u}_z$
- En coordenadas cartesianas el producto escalar puede calcularse a partir del determinante:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{u}_x & \vec{u}_y & \vec{u}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
$$= (a_y b_z - b_y a_z) \vec{u}_x + (a_x b_z - b_x a_z) \vec{u}_y + (a_x b_y - b_x a_y) \vec{u}_z$$

- Propiedades:

 - ► Anticonmutativa: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$. ► Distributiva: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.
 - $\vec{a} \times \vec{a} = 0.$

Índice

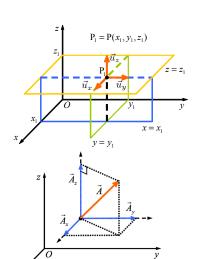
- Álgebra vectoria
- 2 Sistemas de coordenadas
- Campos escalares y vectoriales
- 4 Cálculo integra
- Operadores espaciales

Sistemas de coordenadas

Dependiendo de la geometría del problema a resolver se utilizará uno de los siguientes sistemas de coordenadas:

- Coordenadas cartesianas: (x, y, z)
- Coordenadas cilíndricas: (ρ, ϕ, z)
- Coordenadas esféricas: (r, θ, ϕ)

Coordenadas cartesianas



 Un punto P está determinado por la intersección de tres planos perpendiculares:

$$x = x_1 = \text{cte}$$

 $y = y_1 = \text{cte}$
 $z = z_1 = \text{cte}$

• Coordenadas: $P_1 = P(x_1, y_1, z_1)$

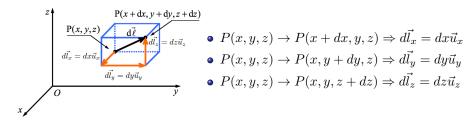
• Un **vector** \vec{A} puede representarse como:

$$\begin{split} \vec{A} &= \vec{A}_x + \vec{A}_y + \vec{A}_z \\ &= A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z \end{split}$$

Coordenadas cartesianas

• Diferencial de longitud: desplazamientos diferenciales en cada una de las direcciones

$$P(x, y, z) \rightarrow P(x + dx, y + dy, z + dz)$$



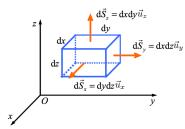
- $P(x, y, z) \rightarrow P(x, y, z + dz) \Rightarrow d\vec{l}_z = dz\vec{u}_z$

$$d\vec{l} = d\vec{l}_x + d\vec{l}_y + d\vec{l}_z = dx\vec{u}_x + dy\vec{u}_y + dz\vec{u}_z$$

Tema 1. Introducción

Coordenadas cartesianas

• **Diferencial de superficie**: los desplazamientos generan distintas superficies diferenciales, que pueden caracterizarse como:



•
$$x = \text{cte.} : d\vec{S}_x = dydz\vec{u}_x$$

$$\bullet \ y = {\rm cte.} : d\vec{S}_y = dx dz \vec{u}_y$$

•
$$z = \text{cte.} : d\vec{S}_z = dxdy\vec{u}_z$$

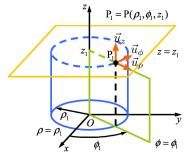
$$d\vec{S} = dydz\vec{u}_x + dxdz\vec{u}_y + dxdy\vec{u}_z$$

 Diferencial de volumen: los movimientos infinitesimales definen un volumen infinitesimal

$$dv = dx dy dz$$

Nótese que dv es un **escalar**

Coordenadas cilíndricas



 Un punto P está determinado por la intersección de tres superficies:

$$\rho = \rho_1 = \text{cte}, \quad (0 \le \rho < \infty)$$

$$\phi = \phi_1 = \text{cte}, \quad (0 \le \phi \le 2\pi)$$

$$z = z_1 = \text{cte}, \quad (-\infty < z < \infty)$$

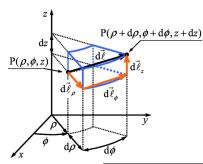
- Coordenadas: $P_1 = P(\rho_1, \phi_1, z_1)$
- ullet Un vector $ec{A}$ puede representarse en coordenadas cilíndricas como:

$$\begin{split} \vec{A} &= \vec{A}_{\rho} + \vec{A}_{\phi} + \vec{A}_z \\ &= A_{\rho} \vec{u}_{\rho} + A_{\phi} \vec{u}_{\phi} + A_z \vec{u}_z \end{split}$$

Coordenadas cilíndricas

 Diferencial de longitud: desplazamientos diferenciales en cada una de las direcciones

$$P(\rho, \phi, z) \rightarrow P(\rho + d\rho, \phi + d\phi, z + dz)$$

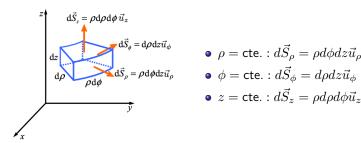


- $d\vec{l}_{\rho} = d\rho \vec{u}_{\rho}$
- $d\vec{l_{\phi}} = \rho d\phi \vec{u_{\phi}}$ (arco de circunferencia!)
- $\bullet \ d\vec{l}_z = dz\vec{u}_z$

$$\label{eq:deltadef} d\vec{l} = d\vec{l_{\rho}} + d\vec{l_{\phi}} + d\vec{l_{z}} = d\rho \vec{u_{\rho}} + \rho d\phi \vec{u_{\phi}} + dz \vec{u_{z}}$$

Coordenadas cilíndricas

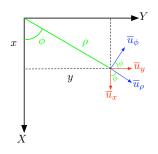
Diferencial de superficie:
$$|d\vec{S} = \rho d\phi dz \vec{u}_{
ho} + d\rho dz \vec{u}_{\phi} + \rho d\rho d\phi \vec{u}_{z}$$



- $\rho = \text{cte.}: d\vec{S}_{\rho} = \rho d\phi dz \vec{u}_{\rho}$
- z = cte.: $d\vec{S}_z = \rho d\rho d\phi \vec{u}_z$

Diferencial de volumen: $dv = \rho d\rho d\phi dz$

Relación coordenadas cartesianas-cilíndricas



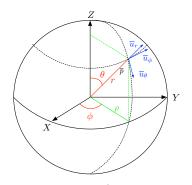
Coordenadas

- $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z.
- $\rho = \sqrt{x^2 + y^2}$, $\phi = \arctan\left(\frac{y}{x}\right)$, z = z.

Vectores unitarios

	\vec{u}_x	\vec{u}_y	\vec{u}_z
$\vec{u}_{ ho}$	$\cos \phi$	$\sin \phi$	0
\vec{u}_{ϕ}	$-\sin\phi$	$\cos \phi$	0
\vec{u}_z	0	0	1

Coordenadas esféricas



• Un punto P está determinado por la intersección de tres superficies:

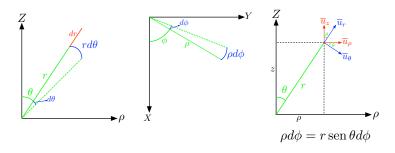
$$r = r_1 = \text{cte}, \quad (0 \le r < \infty)$$

 $\theta = \theta_1 = \text{cte}, \quad (0 \le \theta \le \pi)$
 $\phi = \phi_1 = \text{cte}, \quad (0 \le \phi \le 2\pi)$

- Coordenadas: $P_1 = P(r_1, \theta_1, \phi_1)$
- ullet Un vector $ec{A}$ puede representarse en coordenadas esféricas como:

$$\begin{split} \vec{A} &= \vec{A}_r + \vec{A}_\theta + \vec{A}_\phi \\ &= A_r \vec{u}_r + A_\theta \vec{u}_\theta + A_\phi \vec{u}_\phi \end{split}$$

Coordenadas esféricas



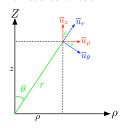
- Diferencial de línea: $| \ d\vec{l} = dr \cdot \vec{u}_r + r d\theta \cdot \vec{u}_\theta + r \sin\theta d\phi \cdot \vec{u}_\phi$
- Diferencial de superficie:

$$d\vec{S} = \underbrace{r^2 \sin\theta d\theta d\phi \cdot \vec{u}_r}_{r=\text{cte.}} + \underbrace{r \sin\theta dr d\phi \cdot \vec{u}_\theta}_{\theta=\text{cte.}} + \underbrace{r dr d\theta \cdot \vec{u}_\phi}_{\phi=\text{cte.}}$$

• Diferencial de volumen: $dv = r^2 \sin \theta dr d\theta d\phi$

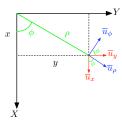
Relación coordenadas cartesianas-cilíndricas-esféricas

Cilíndricas-esféricas



$$z = r \cos \theta$$
$$\rho = r \sin \theta$$
$$\phi = \phi$$

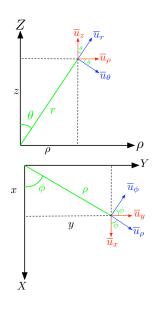
Cilíndricas-cartesianas



$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = z$$

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

Relación vectores unitarios



cilíndricas-esféricas

		$ec{u}_{ ho}$	\vec{u}_{ϕ}	\vec{u}_z
\bar{u}	\vec{l}_r	$\sin \theta$	0	$\cos \theta$
ū	\vec{l}_{θ}	$\cos \theta$	0	$-\sin\theta$
\bar{u}	$\dot{\phi}$	0	1	0

cartesianas-esféricas

	$ec{u}_x$	$ec{u}_y$	$ec{u}_z$
\vec{u}_r	$\sin\theta\cos\phi$	$\sin\theta\sin\phi$	$\cos \theta$
\vec{u}_{θ}	$\cos \theta \cos \phi$	$\cos\theta\sin\phi$	$-\sin\theta$
\vec{u}_{ϕ}	$-\sin\phi$	$\cos \phi$	0

Índice

- Álgebra vectoria
- 2 Sistemas de coordenadas
- Campos escalares y vectoriales
- 4 Cálculo integra
- Operadores espaciales

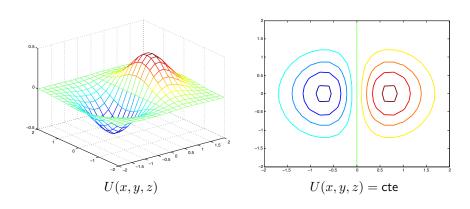
Campo escalar

• Se define campo escalar U como una función escalar que asocia a cada punto del espacio \vec{r} un escalar:

$$U:\mathbb{R}^3\to\mathbb{R}$$

- Notación: $U \equiv U(\vec{r}) \equiv U(x,y,z) \equiv U(\rho,\phi,z) \equiv U(r,\theta,\phi)$
- Puede ser o no función del tiempo: $U(\vec{r},t)$
- Ejemplos:
 - ightharpoonup T(x,y,z), temperatura en el aula.
 - A(x,y): altitud geográfica.
 - V(x,y,z): potencial eléctrico.
- Representación: superficies equiescalares tales que $U(\vec{r})=$ cte.

Representación campo escalar



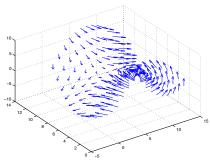
Campo vectorial

 \bullet Se define campo vectorial \vec{A} como una función vectorial que asocia a cada punto del espacio \vec{r} un vector:

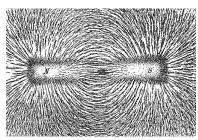
$$\psi: \mathbb{R}^3 \to \mathbb{R}^3$$

- Notación: $\vec{A} \equiv \vec{A}(\vec{r}) \equiv \vec{A}(x,y,z) \equiv \vec{A}(\rho,\phi,z) \equiv \vec{A}(r,\theta,\phi)$
- Puede ser o no función del tiempo: $\vec{A}(\vec{r},t)$
- Ejemplos:
 - $\vec{A}(x,y,z) = xy\vec{u}_x y^2\vec{u}_y + xz\vec{u}_z$
 - Campo gravitatorio terrestre
 - Campos eléctrico y magnético
- Representación: líneas de campo

Representación campo vectorial



Campo de velocidades $\vec{V}(x,y,z)$



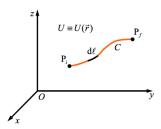
Campo magnético $\vec{B}(x,y)$

Índice

- Álgebra vectoria
- 2 Sistemas de coordenadas
- Campos escalares y vectoriales
- 4 Cálculo integral
- Operadores espaciales

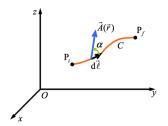
Integral de línea

ullet de un campo escalar U a lo largo de una curva C



$$\int_{P_i}^{P_f} U dl = \lim_{\Delta l_n \to 0} \sum_{n=1}^{\infty} U_n \Delta l_n = k$$

ullet de un **campo vectorial** $ec{A}$ a lo largo de una curva C

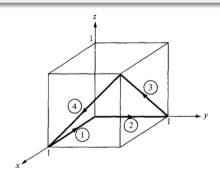


$$\boxed{ \int_{P_i}^{P_f} \vec{A} \cdot d\vec{l} = \lim_{\Delta \vec{l}_n \to 0} \sum_{n=1}^{\infty} \vec{A}_n \cdot \Delta \vec{l}_n = k}$$

- circulación: $\oint_C \vec{A} \cdot d\vec{l}$
- $d\vec{l}$ siempre positivo. Sentido en límites de integración

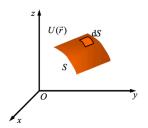
Ejemplo

Calcule la circulación de $\vec{F}=x^2\vec{u}_x-xy\vec{u}_y-y^2\vec{u}_z$ a lo largo del camino de la figura



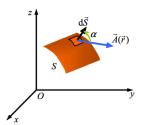
Integral de superficie

ullet de un **campo escalar** U en la superficie S



$$\iint_{S} U dS = \lim_{\Delta S_n \to 0} \sum_{n=1}^{\infty} U_n \Delta S_n$$

ullet de un **campo vectorial** $ec{A}$ en la superficie S se denomina **flujo**



$$\Phi = \iint_S \vec{A} \cdot d\vec{s}$$

- Flujo mide la **fuerza** de un campo
- Convenio: $d\vec{s}$ sentido hacia fuera de una superficie cerrada (encierra un volumen)

Ejemplo

Calcule, por integración directa:

- lacktriangle El área lateral de un cilindro de radio R y altura L
- f 2 El área de una esfera de radio R

Integral de volumen

ullet de un **campo escalar** U en un volumen V

$$\iiint_V U dv = \lim_{\Delta v_n \to 0} \sum_{n=1}^{\infty} U_n \Delta v_n$$

ullet de un **campo vectorial** $ec{A}$ en un volumen V

$$\iiint_{V} \vec{A} \cdot dv = \lim_{\Delta v_n \to 0} \sum_{n=1}^{\infty} \vec{A}_n \Delta v_n$$

- Integral poco habitual
- El resultado es un vector

Ejemplo

Calcule, por integración directa, el volumen de:

- lacksquare Un cilindro de radio R y altura L
- $oldsymbol{\circ}$ Una esfera de radio R

Índice

- Álgebra vectorial
- Sistemas de coordenadas
- Campos escalares y vectoriales
- 4 Cálculo integra
- Operadores espaciales

Operadores espaciales

Operador nabla (coord. cartesianas)

$$\nabla = \frac{\partial}{\partial x}\vec{u}_x + \frac{\partial}{\partial y}\vec{u}_y + \frac{\partial}{\partial z}\vec{u}_z$$

- **O** Gradiente: $\nabla U \rightarrow \text{vector}$
- **2 Divergencia**: $\nabla \cdot \vec{A} \rightarrow \text{escalar}$
- **3 Rotacional**: $\nabla \times \vec{A} \rightarrow \text{vector}$
- Laplaciano:
 - Campo escalar: $\nabla^2 U = \nabla \cdot \nabla U$
 - \star En cartesianas: $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}$
 - ▶ Campo vectorial: $\nabla^2 \vec{A} = \nabla(\nabla \cdot \vec{A}) \nabla \times (\nabla \times \vec{A})$
 - ***** En cartesianas: $(\nabla^2 A_x, \nabla^2 A_y, \nabla^2 A_z)$

Operador nabla

Coordenadas cartesianas

$$\nabla = \frac{\partial}{\partial x}\vec{u}_x + \frac{\partial}{\partial y}\vec{u}_y + \frac{\partial}{\partial z}\vec{u}_z$$

Coordenadas cilíndricas

$$\nabla = \frac{\partial}{\partial \rho} \vec{u}_{\rho} + \frac{1}{\rho} \frac{\partial}{\partial \phi} \vec{u}_{\phi} + \frac{\partial}{\partial z} \vec{u}_{z}$$

Coordenadas esféricas

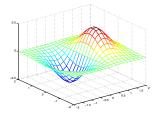
$$\nabla = \frac{\partial}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \vec{u}_\theta + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \vec{u}_\phi$$

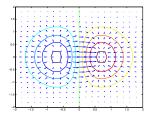
Gradiente

Definición matemática, en cartesianas

$$\nabla U = \frac{\partial U}{\partial x} \vec{u}_x + \frac{\partial U}{\partial y} \vec{u}_y + \frac{\partial U}{\partial z} \vec{u}_z$$

- Intuición: máxima derivada direccional en el punto considerado
 - Dirección: en la que U crece más rápidamente.
 - Módulo: representa el ritmo de variación de U en la dirección de dicho vector gradiente





• En otra dirección $d\vec{l}$, la tasa de variación de U es: $dU = \nabla U \cdot d\vec{l}$

Gradiente

Coordenadas cartesianas

$$\nabla U = \frac{\partial U}{\partial x} \vec{u}_x + \frac{\partial U}{\partial y} \vec{u}_y + \frac{\partial U}{\partial z} \vec{u}_z$$

Coordenadas cilíndricas

$$\nabla U = \frac{\partial U}{\partial \rho} \vec{u}_{\rho} + \frac{1}{\rho} \frac{\partial U}{\partial \phi} \vec{u}_{\phi} + \frac{\partial U}{\partial z} \vec{u}_{z}$$

Coordenadas esféricas

$$\nabla U = \frac{\partial U}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial U}{\partial \theta} \vec{u}_\theta + \frac{1}{r \sin \theta} \frac{\partial U}{\partial \phi} \vec{u}_\phi$$

Ejemplo

Calcule el gradiente de los siguientes campos escalares:

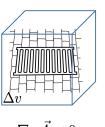
- $V = e^{-z} \sin 2x \cos y$
- $U = \rho^2 z \cos 2\phi$
- $W = 10r\sin^2\theta\cos\phi$

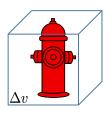
Divergencia

Definición matemática

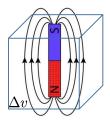
$$\nabla \cdot \vec{A} = \lim_{\Delta V \to 0} \frac{\oint_S \vec{A} \cdot d\vec{S}}{\Delta v}$$

- Intuición: fuentes y/o sumideros de un campo.
 - $\nabla \cdot \vec{A} > 0 \rightarrow \text{fuente}$
 - $ightharpoonup
 abla \cdot \vec{A} < 0
 ightharpoonup ext{sumidero}$
 - $\nabla \cdot \vec{A} = 0 o$ campo **solenoidoal**: líneas de campo cerradas





$$\nabla \cdot \vec{A} > 0$$



$$\nabla \cdot \vec{A} = 0$$

Divergencia

Coordenadas cartesianas

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

Coordenadas cilíndricas

$$\nabla \cdot \vec{A} = \frac{1}{\rho} \frac{\partial (\rho \cdot A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

Coordenadas esféricas

$$\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Teorema de la divergencia

$$\oint_{S} \vec{A} \cdot d\vec{S} = \int_{v} (\nabla \cdot \vec{A}) \, dv$$

Ejemplo

Sea el campo

$$\vec{G} = 10e^{-2z}(\rho \vec{u}_{\rho} + \vec{u}_z)$$

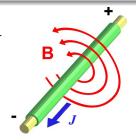
Determine el flujo de \vec{G} en la superficie del cilindro de radio R=1, y de altura $0\leq z\leq 1$. Confirme el resultado utilizando el teorema de la divergencia

Rotacional

Definición matemática

$$\nabla \times \vec{A} = \left(\lim_{\Delta S \to 0} \frac{\oint_L \vec{A} \cdot d\vec{l}}{\Delta S}\right) \vec{u}_n$$

- Intuición: tendencia de un campo a inducir rotaciones alrededor de un punto
- Propiedades:
 - $\nabla \cdot (\nabla \times \vec{A}) = 0.$
 - $\nabla \times \nabla U = 0.$



Rotacional

Coordenadas cartesianas

$$\nabla \times \vec{A} = \begin{vmatrix} \overline{u}_x & \overline{u}_y & \overline{u}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

Coordenadas cilíndricas

$$\nabla \times \vec{A} = \frac{1}{\rho} \left| \begin{array}{ccc} \overline{u}_{\rho} & \rho \overline{u}_{\phi} & \overline{u}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\phi} & A_{z} \end{array} \right|$$

Coordenadas esféricas

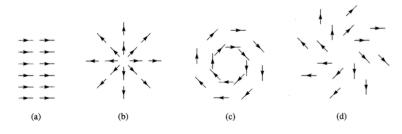
$$\nabla \times \vec{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \overline{u}_r & r \overline{u}_\theta & r \sin \theta \overline{u}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & r A_\theta & r \sin \theta A_\phi \end{vmatrix}$$

Rotacional

Teorema de Stokes

$$\oint_C \vec{A} \cdot d\vec{l} = \int_S (\nabla \times \vec{A}) \cdot d\vec{S}$$

- Clasificación de los campos vectoriales
 - Un campo vectorial \vec{A} se dice **solenoidal** si $\nabla \cdot \vec{A} = 0$.
 - Un campo vectorial \vec{A} se dice **irrotacional** si $\nabla \times \vec{A} = 0$.



Check your understanding

Las anteriores figuras muestran las líneas de un campo \vec{A} . Identifique cuál de las siguiente situaciones se corresponden con las anteriores figuras:

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales

Tema 2. Leyes Generales del Campo Electromagnético

Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

Bibliografía

• J. Fraile Mora. *Electromagnetismo y circuitos eléctricos*. Ed.: Mc Graw Hill. Capítulo 1.

Índice

 $\textbf{1} \textbf{ Magnitudes fundamentales: } \rho_v, \vec{E}, \vec{J}, \vec{D}, \vec{B}, \vec{H}$

2 Ley de conservación de la carga

3 Ecuaciones de Maxwell

Carga eléctrica

- Fenómenos electromagnéticos ←→ presencia de cargas o cargas en mvto.
- Carga eléctrica: q
 - **▶** (+), (−)
 - ▶ Unidades: $[C] = [A \cdot s]$
 - ► Cuantizada: $Q = \pm N \cdot e$, con $N \in \mathbb{N}$ y $e^- = 1.6 \cdot 10^{-16}$ C
 - Ley de conservación de la carga

Densidad de carga

- A nivel macroscópico consideramos la carga una magnitud continua que depende de la posición → campo escalar
- Esta carga puede distribuirse en un volumen

$$\boxed{\rho_v = \frac{dq}{dv} \begin{bmatrix} \mathbf{C} \\ \mathbf{m}^3 \end{bmatrix}} \rightarrow q = \int_V \rho_v dv$$

• en una superficie

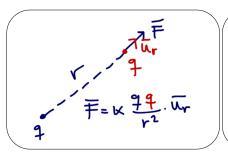
$$\boxed{\rho_s = \frac{dq}{ds} \left[\frac{\mathbf{C}}{\mathbf{m}^2} \right]} \to q = \int_S \rho_s ds$$

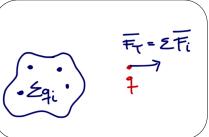
o en un filamento

$$\boxed{\rho_l = \frac{dq}{dl} \left[\frac{\mathbf{C}}{\mathbf{m}} \right]} \rightarrow q = \int_L \rho_l dl$$

Ley de Coulomb

• Si se tiene un conjunto de cargas eléctricas $\sum_i q_i$ y se coloca una pequeña carga de prueba inmóvil q en esa región o aparece sobre ella una fuerza \vec{F}





Campo eléctrico \vec{E}

• $\vec{F} \propto q \Rightarrow \frac{\vec{F}}{q}$ es invariante (sólo depende $\sum_i q_i$) y representa una propiedad local del espacio.

$$\vec{E} = \frac{\vec{F}}{q}, \quad \left[\frac{N}{C} = \frac{V}{m}\right]$$

- Propiedades
 - $\vec{E} \propto \vec{F} \rightarrow$ misma dirección y sentido
 - $\vec{E} \equiv \vec{E} \, (\vec{r})$, es un campo vectorial
 - ightharpoonup Cargas $\sum q_i$ son las fuentes del campo

$$\sum_i q_i \longrightarrow \vec{E} \longleftrightarrow q$$
(FUENTE) (CAMPO) (FUERZA)

Densidad de corriente \vec{J}

- Mvto. cargas eléctricas → corriente eléctrica
- Si ρ_v se mueve a $\vec{v}(\vec{r},t)$ (carga libre), se define la **densidad de corriente**

$$ec{J}(ec{r}) =
ho_v ec{v} \quad \left[rac{\mathrm{A}}{\mathrm{m}^2}
ight]$$

- Medios que contienen carga libre:
 - ightharpoonup metales (conducción de los e^-)
 - ▶ semiconductores (e⁻ libres y huecos)
 - ▶ sales en solución (electrolitos: iones + y −)

Densidad de corriente \vec{J}

Es una medida, en el entorno de un punto P, de la cantidad de carga eléctrica que atraviesa en una unidad de tiempo, la superficie normal a \vec{v}

Intensidad de corriente eléctrica

• Dada una superficie S, a través de la cuál existe movimiento de cargas, el flujo de \vec{J} a través de S se denomina **intensidad de corriente eléctrica**

$$i = \int_{S} \vec{J} \cdot d\vec{s}$$
 [A]

- Magnitud escalar
- Representa la cantidad de carga positiva que atraviesa una superficie dada por unidad de tiempo

$$i = \frac{dq}{dt}$$

Conductores

- En función de las propiedades de conducción los materiales pueden clasificarse en:
 - ightharpoonup conductores: disponen de e^- libres que pueden moverse con facilidad ante la aplicación de un campo eléctrico externo
 - ▶ aislantes o dieléctricos: no disponen de e⁻ libres.
- ullet Si se aplica un $ec{E}_{
 m ext}$ sobre un material con e^- libres $ightarrow ec{F}
 ightarrow ec{a}$

$$\vec{F} = m\vec{a} = q\vec{E}_{\rm ext} \Rightarrow m\frac{d\vec{v}}{dt} = e^-\vec{E}_{\rm ext} \Rightarrow \vec{v} = \frac{e^-\vec{E}_{\rm ext}}{m}t$$

la velocidad de los e^- aumenta linealmente con el tiempo, y por tanto también la corriente!

Ley de Ohm

- Realmente, los e^- chocan con la red cristalina de los conductores:
 - El material se calienta
 - lacktriangle velocidad de arrastre $ec{v}_d$, constate y cuya magnitud es $\propto ec{E}_{ext}$
- Ley de Ohm

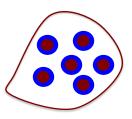
$$\vec{J} = \sigma \vec{E}$$

donde $[\sigma] = [S/m]$ se denomina **conductividad**

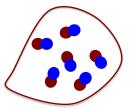
- conductores típicos: $\sigma_{Cu} = 5.8 \cdot 10^7 \, \mathrm{S/m}, \ \sigma_{Ag} = 6.1 \cdot 10^7 \, \mathrm{S/m}$
- ▶ aislantes típicos: $\sigma_{\text{agua}} = 10^{-2} \, \text{S/m}$, $\sigma_{\text{tierra húmeda}} = 10^{-3} \, \text{S/m}$
- conductor perfecto: $\sigma = \infty$
- ightharpoonup aislante perfecto: $\sigma=0$

Dieléctricos

- No disponen de e^- libres.
- Formado por átomos eléctricamente neutros a nivel microscópico
- Tipos



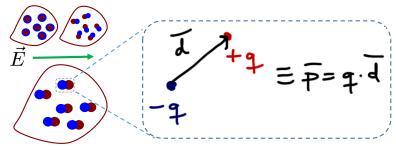
moléculas no polares



moléculas polares (Ej: H₂O)

Vector polarización

ullet Ante la presencia de un campo eléctrico externo $ec{E}$



- ▶ Dipolos inducidos \longrightarrow momento dipolar $\vec{p_i}$
- Vector de polarización

$$\vec{P} = \lim_{\Delta v \to 0} \frac{\sum_i \vec{p}_i}{\Delta v}, \quad \left[\frac{\mathbf{C}}{\mathbf{m}^2}\right]$$

Desplazamiento eléctrico

• Efecto del campo eléctrico externo en el dieléctrico

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \quad \left[\frac{\mathrm{C}}{\mathrm{m}^2} \right]$$

donde
$$\epsilon_0 = \frac{1}{36\pi} \cdot 10^{-9} \, \mathrm{F/m}$$
 es la permitividad en el vacío

• Si el medio dieléctrico es lineal 1 e isótropo $^2
ightarrow ec{P} \propto ec{E}$

$$\vec{P} = \chi_e \epsilon_0 \vec{E}$$

donde χ_e es la susceptibilidad eléctrica

• De esta forma

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon_0 \vec{E} + \chi_e \epsilon_0 \vec{E} = \epsilon_0 (1 + \chi_e) \vec{E} = \epsilon_0 \epsilon_r \vec{E} = \epsilon \vec{E}$$

 $^{2}\epsilon \neq f(\angle \vec{E})$

 $^{1 \}epsilon \neq f(|\vec{E}|)$

Permitividad relativa

- $\epsilon = \epsilon_0 \epsilon_r$ es la permitividad absoluta
 - $ightharpoonup \epsilon_r$ es **permitividad relativa** o constante dieléctrica (caracteriza un dieléctrico)
 - $\epsilon_r \geq 1$
 - Adimensional!

Material	ϵ_r	Rigidez dieléctrica ³ [V/m]
Aire (vacío)	1	$3 \cdot 10^6$
Teflón	2.1	_
Caucho, goma	3.1	$21 \cdot 10^{6}$
Madera	4	$6 \cdot 10^{6}$
Vidrio	7	$30 \cdot 10^{6}$
Agua de mar	81	_

 $^{^3}$ Valor máximo de campo eléctrico que es capaz de soportar el material sin que produzca una descarga eléctrica en su interior 4 2 3 4 3 4 3 4 5 5 5 5 5 5

Dieléctricos, resumen

- $\bullet \ \vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}$
- En el vacío (aire): $\epsilon_r=1$, $\vec{P}=0$, $\vec{D}=\epsilon_0\vec{E}$
- En otro medio dieléctrico: $\epsilon_r > 1$, $\vec{P} \neq 0$

Desplazamiento eléctrico \vec{D}

Depende únicamente de la carga libre ρ_v y es **independiente** del medio físico en que se manifiesta el campo

Corriente de desplazamiento

• Variación del desplazamiento eléctrico con respecto al tiempo

$$\vec{J}_d = \frac{\partial \vec{D}}{\partial t} \quad \left[\frac{\mathbf{A}}{\mathbf{m}^2} \right]$$

- Término fundamental introducido por Maxwell para verificar el *principio de conservación de la carga*
- Unidades de densidad de corriente, pero no hay desplazamiento de carga libre!

Summing up

- ullet ho_v (fuente) ightarrow $ec{E}$ (campo) ightarrow $ec{F}$ (manifestación física)
- Conductores: mvto. de carga libre

$$ightharpoonup ec{E}
ightarrow ec{v}_d
ightarrow ec{J} \longleftrightarrow i \Rightarrow ec{J} = \sigma ec{E}$$

- Dieléctricos: polarización de la materia
 - $\vec{E} \rightarrow \vec{P} \rightarrow \vec{D} = \epsilon_0 \vec{E} + \vec{P} \Rightarrow \boxed{\vec{D} = \epsilon \vec{E}}$

Inducción magnética \vec{B}

- Se define para explicar fuerzas entre corrientes eléctricas
- Corriente eléctrica i (fuente) \rightarrow inducción magnética \vec{B} [T]
- FZA. SOBRE PARTÍCULA CARGADA:

$$\vec{F} \propto \vec{B}$$

$$\vec{F} = q(\vec{v} \times \vec{B})$$

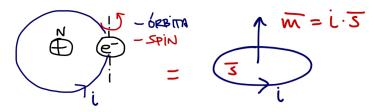
$$\vec{F} \propto \vec{B}$$

$$\vec{F} = q(\vec{v} \times \vec{B})$$

- \blacktriangleright En el elemento $d\vec{l}$ hay una carga dq que se mueve a velocidad $\vec{v}{:}$ $d\vec{F}=dq(\vec{v}\times\vec{B})$
- \blacktriangleright En el hilo $dq\, \vec{v} = i dt \frac{d\vec{l}}{dt} = i d\vec{l}$
 - Por tanto $d\vec{F} = i(d\vec{l} \times \vec{B}) \rightarrow \vec{F} = \int_{\vec{r}} i(d\vec{l} \times \vec{B})$

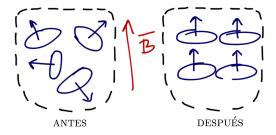
Propiedades magnéticas de la materia

- \bullet Átomo = núcleo (estático) + e^- (orbitan alrededor del núcleo + mvto. spin)
- ullet ightarrow partícula cargada en mvto. ightarrow corriente eléctrica ightarrow campo magnético



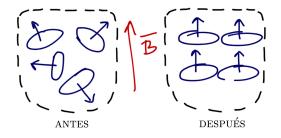
- ullet Cada átomo puede modelarse como un **momento magnético**: $ec{m}_i=iSec{u}_n$
- En estado neutro, orientación de los momentos magnéticos es aleatoria, y por tanto el campo magnético total resultante es nulo (véase siguiente transparencia)

Imanación o imantación de un material



• En presencia de un campo magnético externo \vec{B} los momentos magnéticos se alinean con él

Imanación o imantación de un material



- ullet En presencia de un campo magnético externo $ec{B}$ los momentos magnéticos se alinean con él
- Se dice entonces que el material se magnetiza (imanación o imantación)
- El proceso de imanación queda reflejado a través del vector de magnetización

$$\boxed{ \vec{M} = \lim_{\Delta v \to 0} \frac{\sum_i \vec{m}_i}{\Delta v} \quad \left[\frac{\mathbf{A}}{\mathbf{m}}\right] }$$

Campo magnético \vec{H}

Se define como

$$\left| \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \Rightarrow \vec{B} = \mu_0 (\vec{H} + \vec{M}) \right|$$

donde $\left| \mu_0 = 4\pi \cdot 10^{-7} \, \mathrm{H/m} \right|$ es la permeabilidad en el vacío

 \bullet Si el medio dieléctrico es lineal e isótropo $\to \vec{M} \propto \vec{H}$

$$\vec{M} = \chi_m \vec{H}$$

donde χ_m es la susceptibilidad magnética

• De esta forma

$$\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$$

Permeabilidad relativa

$$\bullet \ \vec{B} = \mu \vec{H}$$

- ullet $\mu = \mu_0 \mu_r$ es la permeabilidad absoluta
 - \blacktriangleright μ_r es **permeabilidad relativa** (caracteriza los materiales magnéticos)
 - Adimensional!
- Materiales magnéticos:
 - ▶ Diamagnéticos: $\mu_r \approx 1 < 1$ (Ej: $\mu_r = 0.99$). Silicio, cobre.
 - ▶ Paramagnéticos: $\mu_r \approx 1 > 1$ (Ej: $\mu_r = 1.01$). Platino, aluminio.
 - Ferromagnéticos $\mu_r \gg 1$ (Ej: $\mu_r \approx 100, 1000, \ldots$).
 - ***** Medios no lineales $o \mu(\vec{H}) o ext{Histéresis}$

Summing up

- ullet $ec{J}$ (fuente) ightarrow $ec{B}$ (campo) ightarrow $ec{F}$ (manifestación física)
- Magnetización de la materia
 - $\qquad \qquad \vec{B}_{\rm ext} \rightarrow \vec{M} \rightarrow \vec{B}_{\rm Total} = \mu_0 (\vec{H} + \vec{M})$
- \bullet En el vacío (espacio libre) $\vec{M}=0 \rightarrow \vec{B}=\mu_0 \vec{H}$

Campo magnético \vec{H}

Está relacionado únicamente con \vec{J} y es **independiente del medio** físico en que se manifiesta el campo

Índice

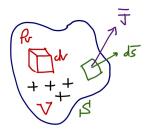
① Magnitudes fundamentales: $\rho_v, \vec{E}, \vec{J}, \vec{D}, \vec{B}, \vec{H}$

2 Ley de conservación de la carga

3 Ecuaciones de Maxwell

Ley de conservación de la carga

- La carga eléctrica ni se crea ni se destruye
- Demostración: sea un volumen V delimitado por una superficie cerrada S que contiene una carga ρ_v .



 \bullet Hipótesis: si sale una corriente de V a través de S, la carga dentro de V ha de disminuir

Ley de conservación de la carga

Corriente saliente

$$i = \oint_S \vec{J} \cdot d\vec{s}$$

Carga en el interior

$$q = \int_{V} \rho_v dv$$

• Disminución de q con el tiempo

$$-\frac{dq}{dt} = -\frac{d}{dt} \int_{V} \rho_v dv$$

• Igualando:

$$\oint_{S} \vec{J} \cdot d\vec{s} = -\frac{d}{dt} \int_{V} \rho_{v} dv = -\int_{V} \frac{\partial \rho_{v}}{\partial t} dv$$

Ley de conservación de la carga

• Si aplicamos el Tma. de la divergencia

$$\int_{V} (\nabla \cdot \vec{J}) dv = -\int_{V} \frac{\partial \rho_{v}}{\partial t} dv$$

• Y dado que esta igualdad ha de cumplirse para cualquier volumen V, se tiene

$$\nabla \cdot \vec{J} = -\frac{\partial \rho_v}{\partial t}$$

ecuación de continuidad

Corrientes estacionarias

- \bullet Se cumple que $\frac{\partial \rho_v}{\partial t} = 0 \Rightarrow \nabla \cdot \vec{J} = 0$
- Son las corrientes suministradas por pilas o baterías (alimentación en circuitos eléctricos)
- Aplicando el Tma. de la divergencia

$$\int_{V} (\nabla \cdot \vec{J}) dv = \oint_{S} \vec{J} \cdot d\vec{s} = 0$$

y como $i = \oint_S \vec{J} \cdot d\vec{s}$

• La ecuación anterior puede expresarse como

$$\sum_{j} i_{j} = 0$$

Ley de Kirchhoff

Índice

① Magnitudes fundamentales: $\rho_v, \vec{E}, \vec{J}, \vec{D}, \vec{B}, \vec{H}$

2 Ley de conservación de la carga

3 Ecuaciones de Maxwell

El campo electromagnético

\vec{E} :	Campo eléctrico	[V/m]
$ec{D}$:	Desplazamiento eléctrico	$[\mathrm{C/m^2}]$
$ec{B}$:	Inducción magnética	[T]
$ec{H}$:	Campo magnético	[A/m]

 \bullet Si \vec{E} y \vec{B} existen en un punto P del espacio, pueden detectarse colocando una carga q que viaja a velocidad \vec{v} en dicho punto

$$\vec{F}_T = \vec{F}_e + \vec{F}_m = q(\vec{E} + \vec{v} \times \vec{B})$$

fuerzas de Lorentz

Postulados fundamentales del electromagnetismo

Ecuaciones de Maxwell

- $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

- $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

Resolver un problema electromagnético

Dadas las reglas anteriores, el objetivo es calcular

$$\{\vec{E},\vec{D},\vec{B},\vec{H},\vec{J},\rho_v\}$$

en todos los puntos del espacio

- Sólo tres de ecuaciones son independientes: Ec. (1), (2) y (4)
- Son necesarias tres ecuaciones adicionales⁴:

$$ec{J} = \sigma ec{E} \quad o \quad ext{conductores}$$
 $ec{D} = \epsilon ec{E} \quad o \quad ext{dieléctricos}$ $ec{B} = \mu ec{H} \quad o \quad ext{magnéticos}$

ecuaciones constitutivas

⁴Para medios lineales, homogéneos, e isótropos

Conductores y dieléctricos

- Sea un material (conductor o dieléctrico) sobre el que se coloca una distribución $\rho_v(t=0)=\rho_0$
- ullet Nos preguntamos cómo evoluciona $ho_v(t)$
- ullet Si $ho_v(t)
 ightarrow ec{J}$, que ha de cumplir conjuntamente

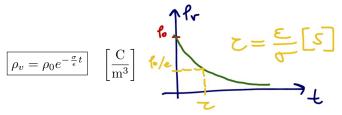
$$\begin{array}{ccc} \vec{J} &= \sigma \vec{E} \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho_v}{\partial t} \end{array} \right\} \Rightarrow \nabla \cdot (\sigma \vec{E}) = -\frac{\partial \rho_v}{\partial t} \Rightarrow \sigma \nabla \cdot \vec{E} = -\frac{\partial \rho_v}{\partial t}$$

 \bullet Y teniendo en cuenta que $\vec{D}=\epsilon\vec{E}$ y $\nabla\cdot\vec{D}=\rho_v$

$$\sigma \nabla \cdot \left(\frac{\vec{D}}{\epsilon} \right) = -\frac{\partial \rho_v}{\partial t} \Rightarrow \boxed{\frac{\sigma}{\epsilon} \rho_v = -\frac{\partial \rho_v}{\partial t}}$$

Conductores y dieléctricos

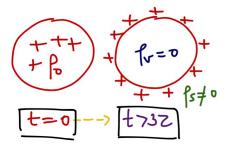
• La solución a la ecuación diferencial es



- Material conductor
 - $\qquad \qquad \textbf{Conductor perfecto: } \sigma = \infty \Rightarrow \tau = 0$
 - ▶ Buen perfecto: $\sigma_{\text{cu}} = 5.8 \cdot 10^7 \, \text{S/m}, \, \epsilon = \epsilon_0 \Rightarrow \tau = 1.52 \cdot 10^{-9} \, \text{s}$
- Material dieléctrico
 - ▶ Dieléctrico perfecto: $\sigma = 0 \Rightarrow \tau = \infty$
 - ▶ Buen dieléctrico: $\sigma_{\text{mica}} = 10^{-15} \, \text{S/m}, \, \epsilon_r = 6 \Rightarrow \tau = 53052 \, \text{s} = 14.7 \, \text{horas}$

Conductores

- Tiempo de relajación au muy pequeño
- En un tiempo muy breve, ρ_0 se distribuye haciendo que $\rho_v=0$



- Interpretación física: campo eléctrico empuja a las cargas a la superficie
- ullet Conclusión: en el interior de un conductor $ec{E}_{
 m electrostático}=0$

Dieléctricos

- ullet Tiempo de relajación au muy grande
- ullet Al colocar una (distribución de) carga ho_0 en un dieléctrico, ésta permanece
- En un dieléctrico la conductividad es baja, y por tanto un campo eléctrico no puede mover las cargas.

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales

Tema 2. Leyes Generales del Campo Electromagnético

Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

Bibliografía

• J. Fraile Mora. *Electromagnetismo y circuitos eléctricos*. Ed.: Mc Graw Hill. Capítulo 1.

Índice

1 Interpretación física de las ecuaciones de Maxwell

2 Condiciones de contorno

Revisiting

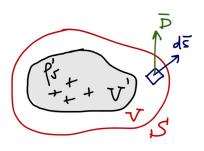
$$\nabla \cdot \vec{D} = \rho_v \tag{1}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{2}$$

$$\nabla \cdot \vec{B} = 0 \tag{3}$$

$$abla imes \vec{H} = \vec{J} + rac{\partial \vec{D}}{\partial t}$$
 (4)

Ley de Gauss



• Si partimos de $\nabla \cdot \vec{D} = \rho_v'$, e integramos sobre volumen arbitrario V

$$\int_{V} \nabla \cdot \vec{D} dv = \int_{V} \rho'_{v} dv$$

• y aplicamos el Tma. de la Divergencia

$$\oint_S \vec{D} \cdot d\vec{s} = \oint_V \rho_v' dv = Q_{\mathsf{libre}}$$

$$\left| \oint_S \vec{D} \cdot d\vec{s} = Q_{\mathsf{libre}} \right|$$

Ley de Gauss

Ley de Gauss

Utilidad

Cálculo del campo eléctrico cuando:

- Distribuciones de carga con simetrías espaciales
- ullet Se conoce a priori la forma de las líneas de $ec{E}$ y su evolución con la distancia

Ejemplos

Utilizando la Ley de Gauss, calcule el campo eléctrico \vec{E} creado por las siguientes distribuciones de carga, situadas en el vacío:

- lacksquare Una carga puntual Q
- lacktriangle Una carga lineal de longitud infinita y densidad ho_l
- lacktriangle Una superficie plana infinita de densidad constante ho_s

Campo magnético solenoidal

$$\nabla \cdot \vec{B} = 0$$

- Campo magnético es **solenoidal** \rightarrow líneas de campo cerradas.
- No existen monopolos magnéticos
- ullet Flujo magnético Φ sobre una superficie cerrada es nulo

$$\Phi = \int_S \vec{B} \cdot d\vec{s}$$

Ley de Ampère-Maxwell

- Ecuación: $\nabla imes \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$
- ullet Si $\partial ec{D}/\partial t = 0$ (magnetostática) ightarrow Ley de Ampère

$$\nabla \times \vec{H} = \vec{J}$$

• En forma integral

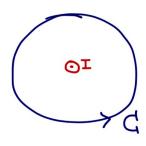
$$\int_S (\nabla \times \vec{H}) \cdot d\vec{s} = \int_S \vec{J} \cdot d\vec{s}$$

y utilizando el Tma. de Stokes

$$\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{s} = I$$

resulta en

$$\oint_C ec{H} \cdot dec{l} = I_{\mathsf{enc}}$$

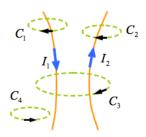


$$\oint_C \vec{H} \cdot d\vec{l} = I_{\mathsf{enc}}$$

- Sentido de integración: regla de la mano derecha
- Situaciones de simetría, en donde $|\vec{H}|$ sea cte. a lo largo del contorno C

Ejemplo 1

Sean dos corrientes $I_1=I$ e $I_2=I$ que tienen los sentidos marcados en la figura. Calcule la circulación de \vec{H} a lo largo de cada una de las curvas representadas en la figura.



Ejemplo 2

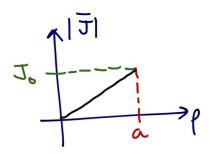
Calcule el campo magnético \vec{H} y el campo de inducción magnética \vec{B} creado por un hilo recto de longitud infinita que transporta una corriente I

Ejemplo 3

Calcule el campo magnético \vec{H} y el campo de inducción magnética \vec{B} en todo punto del espacio, creado por un hilo conductor recto de longitud infinita y radio a conduce una corriente continua I_0 que está distribuida uniformemente a través de su sección recta.

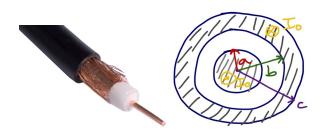
Ejemplo 4

Calcule el campo magnético \vec{H} y el campo de inducción magnética \vec{B} en todo punto del espacio, creado por un hilo conductor recto de longitud infinita y radio a que conduce una corriente continua distribuida en su sección recta de forma no uniforme según la expresión $\vec{J}(\rho) = J_0\left(\frac{\rho}{a}\right) \vec{u}_z$



Ejemplo 5

Calcule el campo magnético \vec{H} y el campo de inducción magnética \vec{B} en todo punto del espacio, creado por un **cable coaxial** recto de longitud infinita cuyo eje longitudinal se sitúa sobre el eje z. El conductor interno tiene radio a y conduce una corriente continua I_0 que está distribuida uniformemente a través de su sección recta y que circula en sentido \vec{u}_z . El conductor externo $(b \le \rho \le c)$, conduce una corriente continua I_0 que está distribuida uniformemente a través de su sección recta y que circula en sentido $-\vec{u}_z$.

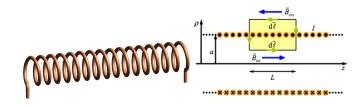


Ejemplo 6

Calcule el campo magnético \vec{H} en todos los puntos del espacio, creado por un plano infinito situado en z=0 que conduce una corriente superficial $\vec{J_s} = k_0 \vec{u_y} A/m$, con $k_0 = cte$.

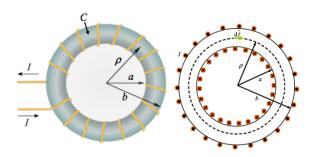
Ejemplo 7

Calcule el campo magnético \vec{H} en todos los puntos del espacio, creado por un solenoide de longitud infinita, por el que circula una corriente I, con una densidad de n espiras por unidad de longitud



Ejemplo 8

Calcule el campo magnético \vec{H} en el interior de una bobina toroidal compuesta por N espiras cada una de las cuales transporta una corriente I



Ley de Faraday

• Electrodinámica:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

② Electrostática:

$$\nabla \times \vec{E} = 0$$

• En electrostática se cumple¹ que

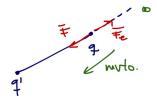
$$\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla V$$

donde V es un campo escalar denominado **potencial eléctrico**

• Unidades: [V] = V (voltios)

Interpretación del potencial eléctrico

ullet Supongamos que tenemos una carga q' y a distancia r colocamos otra carga q



• Para colocar esa carga hemos tenido que realizar un trabajo (con una fuerza \vec{F}) para vencer la fuerza eléctrica \vec{F}_e , esto es

$$W = \int_{\infty}^{r} \vec{F} \cdot d\vec{l} = -\int_{\infty}^{r} \vec{F}_{e} \cdot d\vec{l} = -q \int_{\infty}^{r} \vec{E} \cdot d\vec{l}$$

donde hemos asumido que el punto de partida es un lugar lejano $(r=\infty)$

Interpretación del potencial eléctrico

• Se denomina potenial eléctrico a

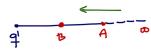
$$V(r) = \frac{W}{q} = -\int_{\infty}^{r} \vec{E} \cdot d\vec{l}$$

esto es, al **trabajo por unidad de carga** para transportar una carga desde ∞ a la posición r

• Unidades: [V] = J/C = V

Diferencia de potencial

 \bullet Supongamos ahora que en el seno de un campo eléctrico \vec{E} quiero desplazar una carga q desde el punto A hasta el punto B



• De la definición de potencial

$$V(A) = -\int_{\infty}^{A} \vec{E} \cdot d\vec{l}$$

$$V(B) = -\int_{\infty}^{B} \vec{E} \cdot d\vec{l}$$

 $\begin{tabular}{ll} {\bf Como} \ B \ {\rm est\'a} \ {\rm m\'as} \ {\rm cerca} \ {\rm de} \\ q' \Rightarrow V(B) > V(A) \\ \end{tabular}$

4 □ > 4 圖 > 4 필 > 4 필 >

Calculamos la diferencia

$$V(B) - V(A) = -\int_{\infty}^{B} \vec{E} \cdot d\vec{l} + \int_{\infty}^{A} \vec{E} \cdot d\vec{l} =$$

$$= -\left[\int_{\infty}^{A} \vec{E} \cdot d\vec{l} + \int_{A}^{B} \vec{E} \cdot d\vec{l}\right] + \int_{\infty}^{A} \vec{E} \cdot d\vec{l} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$$

Diferencia de potencial

$$V(B) - V(A) = V_{AB} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$$

- ullet V_{AB} : A punto inicial, B punto final
- ullet Si $V_{AB}>0 o$ trabajo realizado por agente externo (por ec F)
- ullet Si $V_{AB} < 0
 ightarrow$ trabajo realizado por $ec{E}$ $(ec{F}_e)$
- ullet V_{AB} puede interpretarse como V(B) con referencia en A, por tanto

$$V(r) = -\int_{\infty}^{r} \vec{E} \cdot d\vec{l}$$

puede entenderse como el potencial en r con referencia en ∞ , donde $V(\infty)=0$

No existen potenciales absolutos, sino diferencias de potencial!

Diferencia de potencial

Ejemplo

Calcule el potencial a distancia r de una carga q situada en el origen de coordenadas

Relación potencial y campo eléctrico

• La integral

$$V_{AB} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$$

es independiente de la trayectoria, sólo depende de los puntos inicial y final

- $V_{AB} = V(B) V(A) \rightarrow \text{voy de } A \text{ a } B$
- $V_{BA} = V(A) V(B) \rightarrow \text{voy de } B \text{ a } A$
- Si realizo el camino $A \to B \to A$, entonces

$$V_{AB} + V_{BA} = V_{AB} - V_{AB} = 0 \Rightarrow \boxed{\oint \vec{E} \cdot d\vec{l} = 0}$$

Relación potencial y campo eléctrico

• Por el Tma. de Stokes, el resultado anterior es equivalente a

$$\oint \vec{E} \cdot d\vec{l} = 0 \Rightarrow \nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla V$$

Se dice entonces que el campo (electrostático) es conservativo

 El campo eléctrico se dirige desde las superficies de mayor potencial a las de menos potencial

Ley de Faraday

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

- Ahora el campo eléctrico no es conservativo
- En forma integral, y aplicando el Tma. de Stokes, resulta

$$\oint_C \vec{E} \cdot d\vec{l} = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$$

donde S es la superficie (abierta) definida por el contorno C (cerrado) cualquiera.

- \bullet Normalmente C es el contorno que define el circuito (material conductor): espira.
- El término de la izquierda se denomina fuerza electromotriz (f.e.m.) inducida

$$\varepsilon = \oint_C \vec{E} \cdot d\vec{l}, \quad [V]$$

f.e.m. inducida

- Tiene unidades de voltaje
- Puede interpretarse como la fuerza por unidad de carga cedida por un campo no electrostático, es decir, como un **generador eléctrico**.
- Operando

$$\varepsilon = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} = -\frac{\partial}{\partial t} \int_{S} \vec{B} \cdot d\vec{s} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s}$$

$$\boxed{\varepsilon = -\frac{d\Phi}{dt}} \quad \begin{cases} \varepsilon \propto \frac{d\vec{B}}{dt} \\ \varepsilon \propto \text{área espira} \end{cases}$$

Ley de inducción de Lenz-Faraday

Índice

1 Interpretación física de las ecuaciones de Maxwell

2 Condiciones de contorno

Condiciones de contorno

 Relaciones entre los campos electromagnéticos en la superficie de discontinuidad entre dos medios

► Medio 1:
$$(\epsilon_1, \mu_1, \sigma_1)$$

• Medio 2: $(\epsilon_2, \mu_2, \sigma_2)$

($\epsilon_2, \mu_2, \sigma_2$)

($\epsilon_1, \mu_1, \sigma_1$)

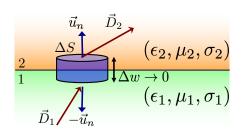
• Descomponemos el campo en componentes normales y tangenciales con respecto a la frontera de separación (siempre conocemos \vec{u}_n)

$$\boxed{ec{E} = ec{E}_{\perp} + ec{E}_{\parallel}} = ec{E}_n + ec{E}_t$$

Todo lo que no sea normal es tangencial:

- $\vec{E}_{\parallel} = \vec{E} \vec{E}_{\perp}$

Componentes normales



• Partimos de

$$\oint_{S} \vec{D} \cdot d\vec{s} = Q$$

ullet como $\Delta w
ightarrow 0$, sólo integramos la tapa superior e inferior,

$$\vec{D}_2 \cdot \vec{u}_n \Delta S + \vec{D}_1 \cdot (-\vec{u}_n \Delta S) = \rho_s \Delta S$$

• Resultando en

$$\left| \vec{u}_n \cdot \left(\vec{D}_2 - \vec{D}_1 \right) = \rho_s \right|$$

Componentes normales

• Teniendo en cuenta que

$$\vec{u}_n \cdot (\vec{D}_2 - \vec{D}_1) = \rho_s$$

entonces

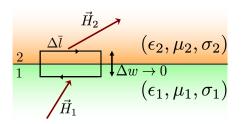
$$\vec{u}_n \cdot \left(\epsilon_2 \vec{E}_2 - \epsilon_1 \vec{E}_1 \right) = \rho_s$$

• De manera análoga, partiendo de $\oint_S \vec{B} \cdot d\vec{s} = 0$, se llega a

$$\vec{u}_n \cdot (\vec{B}_2 - \vec{B}_1) = 0$$
 $\Rightarrow B_{n,2} = B_{n,1}$

$$\left| \vec{u}_n \cdot \left(\mu_2 \vec{H}_2 - \mu_1 \vec{H}_1 \right) = 0 \right|$$

Componentes tangenciales



• Se puede demostrar que (véase página 62)

$$\boxed{\vec{u}_n \times \left(\vec{H}_2 - \vec{H}_1\right) = \vec{J}_s \text{ [A/m]}}$$
$$\boxed{\vec{u}_n \times \left(\vec{E}_2 - \vec{E}_1\right) = 0} \Rightarrow E_{t,1} = E_{t,2}$$

Frontera entre conductor y dieléctrico

- Asumimos medio 1 (conductor) y medio 2 (dieléctrico)
- En un conductor el campo interior es cero ($\vec{E}_1=0\Rightarrow\vec{D}_1=0$), y toda la carga está en la superficie:

$$\vec{u}_n \cdot \left(\vec{D}_2 - \vec{D}_1 \right) = \rho_s \Rightarrow \vec{u}_n \cdot \vec{D}_2 = \rho_s \Rightarrow \boxed{D_{n,2} = \rho_s}$$

$$\vec{u}_n \times \left(\vec{E}_2 - \vec{E}_1 \right) = 0 \Rightarrow \vec{u}_n \times \vec{E}_2 = 0 \Rightarrow \boxed{E_{t,2} = 0}$$

$$\vec{u}_n \cdot \left(\vec{B}_2 - \vec{B}_1 \right) = 0 \Rightarrow \boxed{B_{n,2} = B_{n,1}}$$

$$\vec{u}_n \times \left(\vec{H}_2 - \vec{H}_1 \right) = \vec{J}_s$$

A tener en cuenta

- ullet En un conductor $ec{D}$ es normal a su superficie
- ② Si no me dicen nada, asumimos que $\rho_s=0$ y que $\vec{J_s}=0$. Normalmente estas magnitudes son distintas de cero en la superficie de los conductores

Frontera entre dieléctricos y/o materiales magnéticos

• Asumimos medio 1 (dieléctrico/magnético) y medio 2 (dieléctrico/magnético)

$$\vec{u}_n \cdot \left(\vec{D}_2 - \vec{D}_1\right) = 0 \Rightarrow \boxed{D_{n,2} = D_{n,1}}$$

$$\vec{u}_n \times \left(\vec{E}_2 - \vec{E}_1\right) = 0 \Rightarrow \boxed{E_{t,2} = E_{t,1}}$$

$$\vec{u}_n \cdot \left(\vec{B}_2 - \vec{B}_1\right) = 0 \Rightarrow \boxed{B_{n,2} = B_{n,1}}$$

$$\vec{u}_n \times \left(\vec{H}_2 - \vec{H}_1\right) = 0 \Rightarrow \boxed{H_{t,2} = H_{t,1}}$$

32 / 32

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales

Tema 3. Divisiones del electromagnetismo

Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

Bibliografía

• J. Fraile Mora. *Electromagnetismo y circuitos eléctricos*. Ed.: Mc Graw Hill. Capítulo 2.

2 / 39

Fenómenos electromagnéticos

- Campos estáticos
 - Electrostática
 - Magnetostática
- 2 Campos variables: $\cos{(\omega t)} \rightarrow f \rightarrow \lambda$
 - Cuasiestacionarios: variación lenta
 - * Teoría de circuitos
 - ★ parámetros concentrados: V, I
 - Variación rápida
 - ★ Ondas electromagnéticas
 - \star \vec{E}, \vec{H}

Divisiones del electromagnetismo

• Campos estáticos:

Electrostática

$$\nabla \cdot \vec{D} = \rho_v$$
$$\nabla \times \vec{E} = 0$$

Magnetostática

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{H} = \vec{J}$$

Campos variables:

Campo cuasiestacionario

$$\nabla \cdot \vec{D} = \rho_v$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{H} = \vec{J}$$

Campo electromagnético

$$\nabla \cdot \vec{D} = \rho_v$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

(日) (部) (達) (達)

Índice

- Electrostática
 - Potencial eléctrico
 - Capacidad y condensadores
- Penómenos eléctricos en presencia de corrientes estacionarias
 - Fuerza electromotriz
 - Resistencia eléctrica
- Magnetostática
 - Inductancia
- Campos electromagnéticos variables
 - Corriente de desplazamiento
 - Ondas electromagnéticas

Electrostática

Postulados de la electrostática

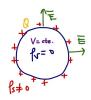
$$\nabla \cdot \vec{D} = \rho_v$$
$$\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla V$$

junto con
$$\vec{D}=\epsilon\vec{E}$$
 y $\vec{F}=q\vec{E}$

Conductores en electrostática

•
$$\rho_v = 0 \Rightarrow \vec{E} = 0$$

- $\rho_s \neq 0$
- Como $\vec{E} = -\nabla V$ y $\vec{E} = 0$, entonces $\nabla V = 0 \Rightarrow V = {\rm cte.}$



- ► Conductor ≡ superficie equipotencial
- ► Conductor a potencial $V_0 \equiv {\sf carga} \ Q$ depositada en superfice $(\rho_s \neq 0)$
- Si conectamos dos conductores igualamos su potencial
- Si ponemos a tierra un conductor su potencial se hace cero.
- ullet $ec{E}$ $oldsymbol{\perp}$ superficie del conductor
 - $\vec{E} = E_n \vec{u}_n$

Apantallamiento eléctrico

Ejemplo 1

Sea una esfera conductora maciza de radio a, rodeada por otra metálica y hueca, concéntrica con la anterior de radio interior b y radio exterior c. Se aplica una tensión de V_0 voltios a la esfera interior, siendo la permitividad de todas las zonas ϵ_0 . Calcule:

- ullet El campo eléctrico y el potencial eléctrico en todos los puntos del espacio, en función de la carga Q depositada por la batería en la esfera interior
- $oldsymbol{Q}$ Valor de Q
- $oldsymbol{\circ}$ Se conecta ahora la esfera hueca exterior a tierra, permaneciendo la interior en V_0 voltios. Determine la nueva carga Q' que adquirirá la esfera interior, así como el campo y el potencial eléctrico en todos los puntos del espacio.

Apantallamiento eléctrico

Ejemplo 1

Sea una esfera conductora maciza de radio a, rodeada por otra metálica y hueca, concéntrica con la anterior de radio interior b y radio exterior c. Se aplica una tensión de V_0 voltios a la esfera interior, siendo la permitividad de todas las zonas ϵ_0 . Calcule:

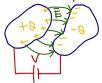
- ullet El campo eléctrico y el potencial eléctrico en todos los puntos del espacio, en función de la carga Q depositada por la batería en la esfera interior
- $oldsymbol{0}$ Valor de Q
- ullet Se conecta ahora la esfera hueca exterior a tierra, permaneciendo la interior en V_0 voltios. Determine la nueva carga Q' que adquirirá la esfera interior, así como el campo y el potencial eléctrico en todos los puntos del espacio.

Jaula de Faraday

Una envoltura cerrada conductora (puede ser una rejilla), divide el espacio en dos regiones independientes (interior y exterior), de tal forma que el interior no se ve afectado por campos externos.

Condensador

- Dispositivo que almacena energía del campo eléctrico
- Está formado por:



- ► Dos conductores (perfectos)
- ▶ Situados en un medio **dieléctrico** (ϵ)
- lacktriangle Sometidos a una diferencia de potencial $V=V_{ab}=\Delta V$

- Funcionamiento:
 - lacktriangle Se aplica d.d.p (con batería o pila) V
 - ② Separación de cargas: un conductor +Q y y otro -Q en la superficie de los mismos.
 - lacktriangle Campo eléctrico ($oxed{\perp}$ a los conductores). Sentido desde +Q a -Q

Capacidad de un condensador

$$C = \frac{Q}{V} = \frac{\oint \vec{D} \cdot d\vec{s}}{\int_{1}^{2} \vec{E} \cdot d\vec{l}} \quad [F]$$

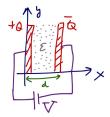
4□ > 4ⓓ > 4≧ > 4≧ > ½ 900

Condensador de placas plano-paralelas

Ejemplo 2

Calcule la capacidad de un condensador plano formado por dos placas metálicas paralelas de superficie S y separadas una distancia d. El espacio entre placas contiene un dieléctrico de permitividad ϵ . Nota: las dimensiones de las placas son muy superiores a la separación d, de tal forma que puede considerar el campo uniforme dentro del condensador. Igualmente puede despreciar el efecto de los bordes

 \bullet Solución: $C=\epsilon \frac{S}{d}\, {\rm F}$



Condensador esférico

Ejemplo 3

Calcule la capacidad de un condensador formado por dos esferas conductoras huecas de radios a y b con un dieléctrico intermedio de conductividad ϵ

• Solución: $C = \frac{4\pi\epsilon ab}{b-a}$ F

Índice

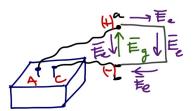
- Electrostática
 - Potencial eléctrico
 - Capacidad y condensadores
- Fenómenos eléctricos en presencia de corrientes estacionarias
 - Fuerza electromotriz
 - Resistencia eléctrica
- Magnetostática
 - Inductancia
- 4 Campos electromagnéticos variables
 - Corriente de desplazamiento
 - Ondas electromagnéticas

Fenómenos eléctricos en presencia de corrientes estacionarias

- ¿Qué es una corriente estacionaria?
 - ▶ Definición: $\nabla \cdot \vec{J} = 0$, esto es corriente continua o de variación lenta.
 - Se cumple que $\vec{J} = \sigma \vec{E}$
- ¿Cómo generamos corrientes estacionarias? fuerza electromotriz (f.e.m.)
- Dichas fuentes alimentan un circuito eléctrico, de tal forma que dentro del circuito se cumple que $\vec{J}=\sigma\vec{E}$
- La relación entre la d.d.p (V) y la corriente (I) en un circuito eléctrico, permite caracterizarlo a través de la **resistencia eléctrica**
- Los fenómenos magnéticos asociados a las corrientes estacionarias generadas se analizarán en la sección de **magnetostática**

Fuerza electromotriz (f.e.m.)

- Fuentes eléctricas que surgen de la conversión de energía no eléctrica en eléctrica:
 - Baterías
 - Células fotovoltaicas
 - generadores eléctricos
- Generan un campo no conservativo \vec{E}_g que produce una acumulación de cargas positivas en el ánodo (+), y de cargas negativas en el cátodo (-)



- ullet $ec{E}_g$ sólo existe dentro de la batería
- Las cargas acumuladas generan un campo conservativo \vec{E}_e (tanto dentro como fuera de la batería)

Fuerza electromotriz (f.e.m.)

 Si integramos a lo largo de un camino cerrado (el circuito eléctrico) el campo total existente

$$\vec{E} = \vec{E}_g + \vec{E}_e$$

se tiene que

$$\begin{split} \oint_C \vec{E} \cdot d\vec{l} &= \oint_C \vec{E}_g \cdot d\vec{l} + \oint_C \vec{E}_e \cdot d\vec{l} \\ &= \int_b^a \vec{E}_g \cdot d\vec{l} = - \int_b^a \vec{E}_e \cdot d\vec{l} = V_{ab} \end{split}$$

- ullet Esto es, entre los terminales a y b tenemos una d.d.p (unidades de voltaje)
- \bullet Esta d.d.p no es fruto del campo eléctrico \vec{E}_e (conservativo), sino de una f.e.m, que denotamos por

$$\varepsilon = \oint_C \vec{E} \cdot d\vec{l} = V_{ab}$$

←□ → ←□ → ←□ → □ → ○○○
 ←□ → ←□ → □ → ○○○○
 ←□ → □ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □ → □
 ←□ → □ → □
 ←□ → □ → □
 ←□ → □ → □
 ←□ → □ → □
 ←□ → □ → □
 ←□ → □ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □
 ←□ → □

15 / 39

Resistencia eléctrica

- Si aplicamos una d.d.p (batería o pila) sobre un medio conductor, generamos un campo eléctrico \vec{E} que actúa sobre las carga libres desplazándolas (por medio de la fuerza eléctrica)
- Aparecerá por tanto una densidad de corriente $\vec{J} = \sigma \vec{E}$
- Y una intensidad de corriente

$$I = \int \vec{J} \cdot d\vec{s} = \sigma \int \vec{E} \cdot d\vec{s}$$

Teniendo en cuenta que

$$V = \int_{a}^{b} \vec{E} \cdot d\vec{l}$$

Resistencia eléctrica

$$R = \frac{V}{I} = \frac{\int_a^b \vec{E} \cdot d\vec{l}}{\sigma \int \vec{E} \cdot d\vec{s}} \quad [\Omega]$$

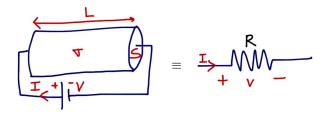
16 / 39

Resistencia de un conductor cilíndrico

Ejemplo 3

Calcule la resistencia eléctrica de un conductor cilíndrico de conductividad σ , sección transversal S y longitud L

• Solución: $R=\frac{1}{\sigma}\frac{L}{S}=\rho\frac{L}{S}\,\Omega$, donde $\rho=1/\sigma$ es la **resistividad** el material



Ley de Ohm

Por tanto, si a la batería (ε) conecto un conductor con resistencia R

$$\varepsilon = V_{ab} = IR$$

Índice

- Electrostática
 - Potencial eléctrico
 - Capacidad y condensadores
- Penómenos eléctricos en presencia de corrientes estacionarias
 - Fuerza electromotriz
 - Resistencia eléctrica
- Magnetostática
 - Inductancia
- 4 Campos electromagnéticos variables
 - Corriente de desplazamiento
 - Ondas electromagnéticas

Magnetostática

Postulados de la magnetostática

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{H} = \vec{J}$$

junto con
$$\vec{B}=\mu\vec{H}$$
 , $\vec{F}=q(\vec{v}\times\vec{B})$ y $d\vec{F}=i(d\vec{l}\times\vec{B})$

ullet des una corriente estacionaria

Inductancia e inductores

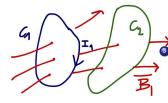
- ullet Inductancia: **propiedad geométrica** de los circuitos eléctricos recorridos por una corriente I
 - Similar a la capacidad: carga depositada en conductor es proporcional a la d.d.p. aplicada
- Supóngase dos circuitos C_1 y C_2 , recorridos por unas corrientes I_1 e I_2 respectivamente
 - $leftilde{f 0}$ I_1 crea un campo $ec{B}_1$ que atraviesa C_2
 - lacksquare El flujo en C_2 creado por $ec{B}_1$ se puede calcular como

$$\Phi_{2,1} = \int_{S_2} \vec{B}_1 \cdot d\vec{s}_2$$

Dado que $ec{B}_1 \propto I_1 \Rightarrow \Phi_{2,1} \propto I_1$

$$\Phi_{2,1} = L_{21}I_1$$

donde L_{21} es la inductancia mutua, con $\left[L\right]=H$



Autoinductancia

• La definición de inductancia puede aplicarse al mismo circuito (asumiendo que tiene N_1 espiras)

$$\Psi_{1,1} = N_1 \Phi_{1,1} = N_1 \int_{S_1} \vec{B}_1 \cdot d\vec{s}_1$$

ullet Igualmente $\Psi_{1,1} \propto I_1$, y a esa constante de proporcionalidad

$$L = L_{11} = N_1 \frac{\Phi_{1,1}}{I_1}$$

la denominamos autoinductancia, con [L] = H

¿Por qué interesa la inductancia?

- Fenómeno de inducción electromagnética: campos variables (next section)
 - ightharpoonup Aparece una f.e.m inducida arepsilon ante variaciones en el flujo magnético (Ley de Lenz-Faraday)
- Inductor: circuito o parte de un circuito que presenta la propiedad de inductancia: solenoides, torodides, cable coaxial, etc.
- Un inductor almacena energía magnética

22 / 39

Índice

- Electrostática
 - Potencial eléctrico
 - Capacidad y condensadores
- Penómenos eléctricos en presencia de corrientes estacionarias
 - Fuerza electromotriz
 - Resistencia eléctrica
- Magnetostática
 - Inductancia
- Campos electromagnéticos variables
 - Corriente de desplazamiento
 - Ondas electromagnéticas

Campos electromagnéticos variables

- Dos escenarios:
 - Campos cuasiestacionarios: Ley de Lenz-Faraday
 - Campos variables: corriente de desplazamiento

Campo cuasiestacionario

Postulados

$$\nabla \cdot \vec{D} = \rho_v$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

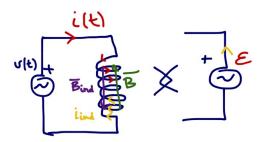
$$\nabla \times \vec{H} = \vec{J}$$

junto con $\vec{D}=\epsilon\vec{E}$, $\vec{B}=\mu\vec{H}$, $\vec{J}=\sigma\vec{E}$ y $\vec{F}=q(\vec{v}\times\vec{B}+\vec{E})$

Revisiting Ley de Lenz-Faraday

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow \varepsilon = -\frac{d\Psi}{dt} = -N\frac{d\Phi}{dt}$$

 \bullet Suponga un circuito (solenoide) con N espiras recorrido por una corriente variable en el tiempo i(t)



Inductor

- $oldsymbol{0}$ i(t) crea un campo $\vec{B}(t)$ en el interior del solenoide
- ② $\vec{B}(t)$ crea un flujo en el propio solenoide $\Psi(t)=N\Phi(t)$ tal que

$$\Psi(t) = Li(t)$$

- § Flujo variable $\Psi(t)$ induce una corriente que crea un campo que se opone $\vec{B}(t)$
- Se genera una f.e.m. inducida¹

$$\varepsilon = \frac{d\Psi}{dt} = L \frac{di(t)}{dt} V$$

• En una bobina se cumple:

$$v(t) = L \frac{di(t)}{dt}$$

¹Nota: ya se ha tenido en cuenta el signo de la corriente

Campos variables

Postulados

$$\nabla \cdot \vec{D} = \rho_v$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

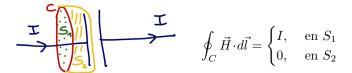
$$\nabla \times \vec{H} = \vec{J} + \boxed{\frac{\partial \vec{D}}{\partial t}}$$

junto con $\vec{D}=\epsilon \vec{E}$, $\vec{B}=\mu \vec{H}$, $\vec{J}=\sigma \vec{E}$, y $\vec{F}=q(\vec{v}\times \vec{B}+\vec{E})$

Corriente de desplazamiento

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

- Uno de los grandes descubrimientos de la física
 - Campos $\vec{D}(t) \rightarrow \vec{H}(t)$ (incluso sin \vec{J} !!)
- ullet Formulada por Maxwell para resolver inconsistencia de la Ley de Ampère en un condensador \to Ley de Ampère-Maxwell



Corriente de desplazamiento en un condensador

Un condensador de placas plano-paralelas de área S y separación d presenta una d.d.p. v(t) entre sus extremos. Calcule la corriente de desplazamiento y la relación v(t) e i(t). El medio entre las placas tiene una permitividad ϵ

- De la transparencia anterior: $I=I_d$, donde $I_d=J_d\cdot S$, con $J_d=\frac{\partial |\vec{D}|}{\partial t}$
- En un condensador se cumple que

$$E = \frac{v(t)}{d} \Rightarrow D = \epsilon E = \epsilon \frac{v(t)}{d} \Rightarrow J_d = \frac{\epsilon}{d} \frac{dv(t)}{dt}$$

Y por tanto

$$I_d = J_d \cdot S = \epsilon \frac{S}{d} \frac{dv(t)}{dt} = C \frac{dv(t)}{dt}$$

Desde el punto de vista general

$$i(t) = C \frac{dv(t)}{dt}$$

Las ecuaciones de Maxwell están acopladas

Desacoplar ecuaciones de Maxwell

$$\begin{split} \nabla \times \nabla \times \vec{H} &= \nabla \times \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) = \sigma (\nabla \times \vec{E}) + \epsilon \left(\nabla \times \frac{\partial \vec{E}}{\partial t} \right) \\ &= \sigma \left(-\mu \frac{\partial \vec{H}}{\partial t} \right) + \epsilon \left(-\mu \frac{\partial^2 \vec{H}}{\partial t^2} \right) \end{split}$$

• Teniendo en cuenta que $\vec{\nabla} \times \vec{\nabla} \times \vec{H} = \nabla (\vec{\nabla} \cdot \vec{H})^0 - \nabla^2 \vec{H}$

$$\nabla^2 \vec{H} - \sigma \mu \frac{\partial \vec{H}}{\partial t} - \epsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} = 0$$

• Para el campo eléctrico, procediendo de la misma forma

$$\boxed{ \nabla^2 \vec{E} - \sigma \mu \frac{\partial \vec{E}}{\partial t} - \epsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0 }$$

31 / 39

Ecuación de onda

• Los campos electromagnéticos (variables en el tiempo), cumplen la ecuación:

$$\nabla^{2}\vec{H} - \sigma\mu \frac{\partial\vec{H}}{\partial t} - \epsilon\mu \frac{\partial^{2}\vec{H}}{\partial t^{2}} = 0$$
$$\nabla^{2}\vec{E} - \sigma\mu \frac{\partial\vec{E}}{\partial t} - \epsilon\mu \frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0$$

 \bullet ¿Qué es una onda? Una función del espacio y del tiempo u(z,t) que satisface:

$$\frac{\partial^2 u}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = 0$$

la denominada ecuación de onda, donde v es la velocidad de propagación de la onda

32 / 39

Ondas electromagnéticas

• En el vacío: $\epsilon = \epsilon_0$, $\mu = \mu_0$ y $\sigma = 0$, se tiene

$$\nabla^2 \vec{E} - \epsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \Rightarrow \text{el campo EM es una onda}$$

• Comparando con la ecuación de onda, se puede identificar que $v^2=\frac{1}{\epsilon_0\mu_0}$, y por tanto

$$v = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = c_0 = 3 \cdot 10^8 \,\text{m/s}$$

• ¡¡¡La velocidad de propagación de una onda EM depende de dos constantes estáticas!!!

En el vacío, las ondas EM viajan a la velocidad de la luz ⇔ la luz es una onda EM.

4 □ ト ← □ ト ← 亘 ト ← 亘 ・ り Q (*)

33 / 39

Solución a la ecuación de onda

La solución general a

$$\frac{\partial^2 u}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = 0$$

es la superposición de una perturbación que se desplaza en el sentido +z y otra perturbación que se desplaza en sentido -z

- $u(z,t) = A\cos(\beta(vt-z)) + B\cos(\beta(vt+z))$
- $u(z,t) = Ae^{j\beta(vt-z)} + Be^{j\beta(vt+z)}$

donde A, B y β son constantes (reales)

Compruebe que las soluciones anteriores cumplen la ecuación de onda

34 / 39

Soluciones estacionarias

- ullet Nos interesan soluciones estacionarias (armónicas, o sinusoidales): $\cos \omega t$
 - No requieren condiciones iniciales
 - Cualquier solución puede escribirse como combinación lineal de sinusoides (análisis de Fourier).
- ullet Las soluciones del campo EM serán de la forma (asumiendo variación en z)

$$\vec{E}(z,t) = \vec{E}_0 \cos(\omega t - \beta z) \, V/m$$

$$\vec{H}(z,t) = \vec{H}_0 \cos \left(\omega t - \beta z\right) \text{A/m}$$

donde $\left| \beta = \frac{\omega}{v} \, \mathrm{rad/m} \, \right|$ se conoce como **número de onda** o **constante de**

fase

Ondas estacionarias

- La onda estacionaria $u(z,t) = A\cos{(\omega t \beta z)}$ varía periódicamente en el **espacio** y en el **tiempo**.
 - Periodo de repetición temporal (movie): $T = \frac{2\pi}{\omega}$
 - Periodo de repetición espacial: (picture): $\lambda = \frac{2\pi}{\beta}$
- Las ondas estacionarias permiten trabajar de forma sencilla en el plano complejo

$$u(z,t) = A\cos(\omega t - \beta z) = \Re\left\{Ae^{j(\omega t - \beta z)}\right\} =$$
$$= \Re\left\{\underbrace{Ae^{-j\beta z}}_{\mathbb{U}}e^{j\omega t}\right\} = \Re\left\{\mathbb{U}e^{j\omega t}\right\}$$

donde $\mathbb{U} \in \mathbb{C}$ se denomina **fasor**

36 / 39

Ecuaciones de Maxwell en el plano complejo

• De esta forma, el campo EM se puede expresar como

$$\vec{E}(\vec{r},t) = \Re\left\{\vec{\mathbb{E}}(\vec{r}) \cdot e^{j\omega t}\right\}$$

• Si sustituimos la expresión anterior en, por ejemplo, la ecuación de Faraday

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow \nabla \times \Re \left\{ \vec{\mathbb{E}}(\vec{r}) \cdot e^{j\omega t} \right\} = -\frac{\partial \Re \left\{ \vec{\mathbb{E}}(\vec{r}) \cdot e^{j\omega t} \right\}}{\partial t}$$

Operando

$$\mathcal{K}\left\{\nabla\times\vec{\mathbb{E}}(\vec{r})\cdot e^{j\omega t}\right\} = -\mathcal{K}\left\{\frac{\partial\left(\vec{\mathbb{B}}(\vec{r})\cdot e^{j\omega t}\right)}{\partial t}\right\}$$

$$\left(\nabla \times \vec{\mathbb{E}}(\vec{r})\right) \cdot e^{j\omega t} = -\frac{\vec{\mathbb{B}}(\vec{r}) \cdot \partial e^{j\omega t}}{\partial t} = -j\omega \vec{\mathbb{B}}(\vec{r}) \cdot e^{j\omega t}$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

37 / 39

Ecuaciones de Maxwell en el plano complejo

Simplificando

$$\left(
abla imes ec{\mathbb{E}}(ec{r})
ight) \cdot e^{j\omega t} = -j\omega ec{\mathbb{B}}(ec{r}) \cdot e^{j\omega t}$$

Se llega a

$$\nabla \times \vec{\mathbb{E}} = -j\omega \vec{\mathbb{B}}$$

las derivadas temporales se convierten en productos $j\omega$

 Siguiendo la misma metodología, las ecuaciones de Maxwell pueden escribirse como

$$\nabla \cdot \vec{\mathbb{D}} = \rho_v$$

$$\nabla \times \vec{\mathbb{E}} = -j\omega \vec{\mathbb{B}}$$

$$\nabla \cdot \vec{\mathbb{B}} = 0$$

$$\nabla \times \vec{\mathbb{H}} = \vec{\mathbb{J}} + j\omega \vec{\mathbb{D}}$$

junto con
$$\vec{\mathbb{D}}=\epsilon\vec{\mathbb{E}}$$
, $\vec{\mathbb{B}}=\mu\vec{\mathbb{H}}$ y $\vec{\mathbb{J}}=\sigma\vec{\mathbb{E}}$

→□→ →□→ → □→ → □→ □ → ○

Espectro EM

• Utilizando fasores en la ecuación de onda se llega a

$$\nabla^2 \vec{\mathbb{E}} + \vec{\mathbb{E}} \left(\omega^2 \mu \epsilon - j \omega \sigma \mu \right) = 0$$

$$\nabla^2 \vec{\mathbb{H}} + \vec{\mathbb{H}} \left(\omega^2 \mu \epsilon - j \omega \sigma \mu \right) = 0$$

- ullet La ecuación anterior, para un medio determinado (ϵ,μ,σ) , sólo depende de ω
- \bullet La solución del campo EM variable en el tiempo fenómenos electromagnéticos, depende de ω
 - ▶ Los fenómenos EM se ordenan de acuerdo a ω → espectro EM.